We consider the problem of deformable object detection and dense correspondence in cluttered 3D scenes. Key ingredient to our method is the choice of representation: we formulate the problem in the spectral domain using the functional maps framework, where we seek for the most regular nearly-isometric parts in the model and the scene that minimize correspondence error. The problem is initialized by solving a sparse relaxation of a quadratic assignment problem on features obtained via data-driven metric learning. The resulting matching pipeline is solved efficiently, and yields accurate results in challenging settings that were previously left unexplored in the literature.

Matching deformable objects in clutter / Cosmo, Luca; Rodola, Emanuele; Masci, Jonathan; Torsello, Andrea; Bronstein, Michael M.. - (2016), pp. 1-10. (Intervento presentato al convegno 4th International Conference on 3D Vision, 3DV 2016 tenutosi a Stanford; USA) [10.1109/3DV.2016.10].

Matching deformable objects in clutter

Cosmo, Luca;Rodola, Emanuele;
2016

Abstract

We consider the problem of deformable object detection and dense correspondence in cluttered 3D scenes. Key ingredient to our method is the choice of representation: we formulate the problem in the spectral domain using the functional maps framework, where we seek for the most regular nearly-isometric parts in the model and the scene that minimize correspondence error. The problem is initialized by solving a sparse relaxation of a quadratic assignment problem on features obtained via data-driven metric learning. The resulting matching pipeline is solved efficiently, and yields accurate results in challenging settings that were previously left unexplored in the literature.
2016
4th International Conference on 3D Vision, 3DV 2016
Correspondence; Deep learning; Functional maps
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Matching deformable objects in clutter / Cosmo, Luca; Rodola, Emanuele; Masci, Jonathan; Torsello, Andrea; Bronstein, Michael M.. - (2016), pp. 1-10. (Intervento presentato al convegno 4th International Conference on 3D Vision, 3DV 2016 tenutosi a Stanford; USA) [10.1109/3DV.2016.10].
File allegati a questo prodotto
File Dimensione Formato  
Rodola_Matching_2016.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF
Rodola_Matching_2016.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 379.49 kB
Formato Adobe PDF
379.49 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1228915
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 39
social impact