In this paper, we propose an optimization method for estimating the parameters that typically appear in graph-theoretical formulations of the matching problem for object detection. Although several methods have been proposed to optimize parameters for graph matching in a way to promote correct correspondences and to restrict wrong ones, our approach is novel in the sense that it aims at improving performance in the more general task of object detection. In our formulation, similarity functions are adjusted so as to increase the overall similarity among a reference model and the observed target, and at the same time reduce the similarity among reference and "non-target" objects. We evaluate the proposed method in two challenging scenarios, namely object detection using data captured with a Kinect sensor in a real environment, and intrinsic metric learning for deformable shapes, demonstrating substantial improvements in both settings.
Learning similarities for rigid and non-rigid object detection / Kanezaki, Asako; Rodolà, Emanuele; Cremers, Daniel; Harada, Tatsuya. - (2015), pp. 720-727. (Intervento presentato al convegno 2014 2nd International Conference on 3D Vision, 3DV 2014 tenutosi a Tokyo, Japan) [10.1109/3DV.2014.61].
Learning similarities for rigid and non-rigid object detection
Rodolà, Emanuele;
2015
Abstract
In this paper, we propose an optimization method for estimating the parameters that typically appear in graph-theoretical formulations of the matching problem for object detection. Although several methods have been proposed to optimize parameters for graph matching in a way to promote correct correspondences and to restrict wrong ones, our approach is novel in the sense that it aims at improving performance in the more general task of object detection. In our formulation, similarity functions are adjusted so as to increase the overall similarity among a reference model and the observed target, and at the same time reduce the similarity among reference and "non-target" objects. We evaluate the proposed method in two challenging scenarios, namely object detection using data captured with a Kinect sensor in a real environment, and intrinsic metric learning for deformable shapes, demonstrating substantial improvements in both settings.File | Dimensione | Formato | |
---|---|---|---|
Rodola_Learning_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.