We propose a shape matching method that produces dense correspondences tuned to a specific class of shapes and deformations. In a scenario where this class is represented by a small set of example shapes, the proposed method learns a shape descriptor capturing the variability of the deformations in the given class. The approach enables the wave kernel signature to extend the class of recognized deformations from near isometries to the deformations appearing in the example set by means of a random forest classifier. With the help of the introduced spatial regularization, the proposed method achieves significant improvements over the baseline approach and obtains state-of-the-art results while keeping short computation times.

Dense non-rigid shape correspondence using random forests / Rodolà, Emanuele; Bulò, Samuel Rota; Windheuser, Thomas; Vestner, Matthias; Cremers, Daniel. - (2014), pp. 4177-4184. (Intervento presentato al convegno 27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014 tenutosi a Columbus; USA) [10.1109/CVPR.2014.532].

Dense non-rigid shape correspondence using random forests

Rodolà, Emanuele;
2014

Abstract

We propose a shape matching method that produces dense correspondences tuned to a specific class of shapes and deformations. In a scenario where this class is represented by a small set of example shapes, the proposed method learns a shape descriptor capturing the variability of the deformations in the given class. The approach enables the wave kernel signature to extend the class of recognized deformations from near isometries to the deformations appearing in the example set by means of a random forest classifier. With the help of the introduced spatial regularization, the proposed method achieves significant improvements over the baseline approach and obtains state-of-the-art results while keeping short computation times.
2014
27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014
decision trees; deformation; image processing
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Dense non-rigid shape correspondence using random forests / Rodolà, Emanuele; Bulò, Samuel Rota; Windheuser, Thomas; Vestner, Matthias; Cremers, Daniel. - (2014), pp. 4177-4184. (Intervento presentato al convegno 27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014 tenutosi a Columbus; USA) [10.1109/CVPR.2014.532].
File allegati a questo prodotto
File Dimensione Formato  
Rodola_Dense_2014.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 600.54 kB
Formato Adobe PDF
600.54 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1227793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 131
  • ???jsp.display-item.citation.isi??? 83
social impact