Undirected Vertex Geography (UVG) is an impartial two-person game played on a (undirected) graph G with a specified vertex u. Players, Alice and Bob, alternately choose a vertex that has not been chosen before and that is adjacent to the last chosen vertex. Alice plays first, choosing an adjacent vertex of u. The first player who is unable to choose a vertex loses. Determining whether Alice has a winning strategy in this game (the UVG problem) is known to be solvable in polynomial time. In this paper we study the complexity of the short version of this game (the short-UVG problem) in which it is asked whether Alice has a winning strategy that requires at most k moves, with k part of the input. We show that the short-UVG problem is PSPACE-complete even for bipartite graphs whereas a polynomial algorithm can be designed for trees. Finally, we introduce a partizan version of theUVG-game which we believe is of independent interest. We provide some preliminary results and conclude with many open problems.

On variants of Vertex Geography on undirected graphs / Monti, A.; Sinaimeri, B.. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - 251:(2018), pp. 268-275. [10.1016/j.dam.2018.05.044]

On variants of Vertex Geography on undirected graphs

Monti, A.
Co-primo
;
2018

Abstract

Undirected Vertex Geography (UVG) is an impartial two-person game played on a (undirected) graph G with a specified vertex u. Players, Alice and Bob, alternately choose a vertex that has not been chosen before and that is adjacent to the last chosen vertex. Alice plays first, choosing an adjacent vertex of u. The first player who is unable to choose a vertex loses. Determining whether Alice has a winning strategy in this game (the UVG problem) is known to be solvable in polynomial time. In this paper we study the complexity of the short version of this game (the short-UVG problem) in which it is asked whether Alice has a winning strategy that requires at most k moves, with k part of the input. We show that the short-UVG problem is PSPACE-complete even for bipartite graphs whereas a polynomial algorithm can be designed for trees. Finally, we introduce a partizan version of theUVG-game which we believe is of independent interest. We provide some preliminary results and conclude with many open problems.
2018
Algorithmic combinatorial game theory; Computational complexity; Short winning strategy problems; Undirected vertex geography; Discrete Mathematics and Combinatorics; Applied Mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
On variants of Vertex Geography on undirected graphs / Monti, A.; Sinaimeri, B.. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - 251:(2018), pp. 268-275. [10.1016/j.dam.2018.05.044]
File allegati a questo prodotto
File Dimensione Formato  
Monti_variants_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 312.76 kB
Formato Adobe PDF
312.76 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1223260
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact