We introduce a robust clustering procedure for parsimonious model-based clustering. The classical mclust framework is robustified through impartial trimming and eigenvalue-ratio constraints (the tclust framework, which is robust but not affine invariant). An advantage of our resulting mtclust approach is that eigenvalue-ratio constraints are not needed for certain model formulations, leading to affine invariant robust parsimonious clustering. We illustrate the approach via simulations and a benchmark real data example. R code for the proposed method is available at https://github.com/afarcome/mtclust.

Robust inference for parsimonious model-based clustering / Dotto, Francesco; Farcomeni, Alessio. - In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. - ISSN 0094-9655. - 89:3(2019), pp. 414-442. [10.1080/00949655.2018.1554659]

Robust inference for parsimonious model-based clustering

Dotto, Francesco;Farcomeni, Alessio
2019

Abstract

We introduce a robust clustering procedure for parsimonious model-based clustering. The classical mclust framework is robustified through impartial trimming and eigenvalue-ratio constraints (the tclust framework, which is robust but not affine invariant). An advantage of our resulting mtclust approach is that eigenvalue-ratio constraints are not needed for certain model formulations, leading to affine invariant robust parsimonious clustering. We illustrate the approach via simulations and a benchmark real data example. R code for the proposed method is available at https://github.com/afarcome/mtclust.
2019
affine invariance; factor model; groups; mclust; tclust; statistics and probability; modeling and simulation; statistics, probability and uncertainty; applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Robust inference for parsimonious model-based clustering / Dotto, Francesco; Farcomeni, Alessio. - In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. - ISSN 0094-9655. - 89:3(2019), pp. 414-442. [10.1080/00949655.2018.1554659]
File allegati a questo prodotto
File Dimensione Formato  
Dotto_Robust_2019.pdf

Open Access dal 06/12/2019

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF
Dotto_Robust-inference_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1219616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact