Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to exhibit therapeutic activity in cancer. However, many tumors remain resistant to treatment with TRAIL. Therefore, small molecules that potentiate the cytotoxic effects of TRAIL could be used for combinatorial therapy. Here we found that the ionophore antibiotic salinomycin acts in synergism with TRAIL, enhancing TRAIL-induced apoptosis in glioma cells. Treatment with low doses of salinomycin in combination with TRAIL augmented the activation of caspase-3 and increased TRAIL-R2 cell surface expression. TRAIL-R2 upmodulation was required for mediating the stimulatory effect of salinomycin on TRAIL-mediated apoptosis, since it was abrogated by siRNA-mediated TRAIL-R2 knockdown. Salinomycin in synergism with TRAIL exerts a marked anti-tumor effect in nude mice xenografted with human glioblastoma cells. Our results suggest that the combination of TRAIL and salinomycin may be a useful tool to overcome TRAIL resistance in glioma cells and may represent a potential drug for treatment of these tumors. Importantly, salinomycin+TRAIL were able to induce cell death of well-defined glioblastoma stem-like lines.

Salinomycin potentiates the cytotoxic effects of TRAIL on glioblastoma cell lines / Calzolari, Alessia; Saulle, Ernestina; De Angelis, Maria Laura; Pasquini, Luca; Boe, Alessandra; Pelacchi, Federica; Ricci-Vitiani, Lucia; Baiocchi, Marta; Testa, Ugo. - In: PLOS ONE. - ISSN 1932-6203. - 9:4(2014), p. e94438. [10.1371/journal.pone.0094438]

Salinomycin potentiates the cytotoxic effects of TRAIL on glioblastoma cell lines

Baiocchi, Marta;
2014

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to exhibit therapeutic activity in cancer. However, many tumors remain resistant to treatment with TRAIL. Therefore, small molecules that potentiate the cytotoxic effects of TRAIL could be used for combinatorial therapy. Here we found that the ionophore antibiotic salinomycin acts in synergism with TRAIL, enhancing TRAIL-induced apoptosis in glioma cells. Treatment with low doses of salinomycin in combination with TRAIL augmented the activation of caspase-3 and increased TRAIL-R2 cell surface expression. TRAIL-R2 upmodulation was required for mediating the stimulatory effect of salinomycin on TRAIL-mediated apoptosis, since it was abrogated by siRNA-mediated TRAIL-R2 knockdown. Salinomycin in synergism with TRAIL exerts a marked anti-tumor effect in nude mice xenografted with human glioblastoma cells. Our results suggest that the combination of TRAIL and salinomycin may be a useful tool to overcome TRAIL resistance in glioma cells and may represent a potential drug for treatment of these tumors. Importantly, salinomycin+TRAIL were able to induce cell death of well-defined glioblastoma stem-like lines.
2014
animals; caspase 3; cell line; tumor; cell proliferation; cytotoxins; drug resistance; neoplasm; drug synergism; glioblastoma; humans; mice; nude; pyrans; TNF-related apoptosis-Inducing ligand
01 Pubblicazione su rivista::01a Articolo in rivista
Salinomycin potentiates the cytotoxic effects of TRAIL on glioblastoma cell lines / Calzolari, Alessia; Saulle, Ernestina; De Angelis, Maria Laura; Pasquini, Luca; Boe, Alessandra; Pelacchi, Federica; Ricci-Vitiani, Lucia; Baiocchi, Marta; Testa, Ugo. - In: PLOS ONE. - ISSN 1932-6203. - 9:4(2014), p. e94438. [10.1371/journal.pone.0094438]
File allegati a questo prodotto
File Dimensione Formato  
Calzolari_Salinomycin-potentiates_2014.PDF

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1215209
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 35
social impact