We propose a fast method for high order approximation of potentials of the Helm-holtz type operator (Delta+kappa^2) over hyper-rectangles in (R^n). By using the basis functions introduced in the theory of approximate approximations, the cubature of a potential is reduced to the quadrature of one-dimensional integrals with separable integrands. Then a separated representation of the density, combined with a suitable quadrature rule, leads to a tensor product representation of the integral operator. Numerical tests show that these formulas are accurate and provide approximations of order (6) up to dimension (100) and (kappa^2=100).

Accurate computation of the high dimensional diffraction potential over hyper-rectangles / Lanzara, Flavia; Maz'Ya, Vladimir; Schmidt, Gunther. - In: BULLETIN OF TICMI. - ISSN 1512-0082. - 22:2(2018), pp. 91-102.

Accurate computation of the high dimensional diffraction potential over hyper-rectangles

Flavia Lanzara;
2018

Abstract

We propose a fast method for high order approximation of potentials of the Helm-holtz type operator (Delta+kappa^2) over hyper-rectangles in (R^n). By using the basis functions introduced in the theory of approximate approximations, the cubature of a potential is reduced to the quadrature of one-dimensional integrals with separable integrands. Then a separated representation of the density, combined with a suitable quadrature rule, leads to a tensor product representation of the integral operator. Numerical tests show that these formulas are accurate and provide approximations of order (6) up to dimension (100) and (kappa^2=100).
2018
Helmholtz potential, separated representations, higher dimensions
01 Pubblicazione su rivista::01a Articolo in rivista
Accurate computation of the high dimensional diffraction potential over hyper-rectangles / Lanzara, Flavia; Maz'Ya, Vladimir; Schmidt, Gunther. - In: BULLETIN OF TICMI. - ISSN 1512-0082. - 22:2(2018), pp. 91-102.
File allegati a questo prodotto
File Dimensione Formato  
Lanzara_Accurate-computation_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 205.86 kB
Formato Adobe PDF
205.86 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1214909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact