We report the first observation of Riemann (simple) waves, which play a crucial role for understanding the dynamics of any shock-bearing system. This was achieved by properly tailoring the phase of an ultrashort light pulse injected into a highly nonlinear fiber. Optical Riemann waves are found to evolve in excellent quantitative agreement with the remarkably simple inviscid Burgers equation, whose applicability in physical systems is often challenged by viscous or dissipative effects. Our method allows us to further demonstrate a viable novel route to efficiently control the shock formation by the proper shaping of a laser pulse phase. Our results pave the way towards the experimental study, in a convenient benchtop setup, of complex physical phenomena otherwise difficult to access.
Experimental generation of Riemann waves in optics. A route to shock wave control / Wetzel, Benjamin; Bongiovanni, Domenico; Kues, Michael; Hu, Yi; Chen, Zhigang; Trillo, Stefano; Dudley, John M.; Wabnitz, Stefan; Morandotti, Roberto. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 117:7(2016), pp. 1-6. [10.1103/PhysRevLett.117.073902]
Experimental generation of Riemann waves in optics. A route to shock wave control
WABNITZ, Stefan;
2016
Abstract
We report the first observation of Riemann (simple) waves, which play a crucial role for understanding the dynamics of any shock-bearing system. This was achieved by properly tailoring the phase of an ultrashort light pulse injected into a highly nonlinear fiber. Optical Riemann waves are found to evolve in excellent quantitative agreement with the remarkably simple inviscid Burgers equation, whose applicability in physical systems is often challenged by viscous or dissipative effects. Our method allows us to further demonstrate a viable novel route to efficiently control the shock formation by the proper shaping of a laser pulse phase. Our results pave the way towards the experimental study, in a convenient benchtop setup, of complex physical phenomena otherwise difficult to access.File | Dimensione | Formato | |
---|---|---|---|
Wetzel_Experimental_2016.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.78 MB
Formato
Adobe PDF
|
2.78 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.