We numerically study the evolution of the spectrum of parametric resonance or modulation instability sidebands in quasiperiodic dispersion oscillating fibers. We separately consider a linear variation along the fiber of either the spatial period, the average dispersion, or the amplitude of the dispersion oscillation. We found that this linear variation of the dispersion oscillating fiber parameters may provide different novel mechanisms for the splitting of the resonance sideband spectrum, owing to coherent interference between quasi-resonant waves that are generated at different points along the fiber.

Nonlinear parametric resonances in quasiperiodic dispersion oscillating fibers / Finot, Christophe; Sysoliatin, Alexej; Wabnitz, Stefan. - In: OPTICS COMMUNICATIONS. - ISSN 0030-4018. - 348:(2015), pp. 24-30. [10.1016/j.optcom.2015.03.019]

Nonlinear parametric resonances in quasiperiodic dispersion oscillating fibers

WABNITZ, Stefan
2015

Abstract

We numerically study the evolution of the spectrum of parametric resonance or modulation instability sidebands in quasiperiodic dispersion oscillating fibers. We separately consider a linear variation along the fiber of either the spatial period, the average dispersion, or the amplitude of the dispersion oscillation. We found that this linear variation of the dispersion oscillating fiber parameters may provide different novel mechanisms for the splitting of the resonance sideband spectrum, owing to coherent interference between quasi-resonant waves that are generated at different points along the fiber.
2015
Dispersion oscillating fiber; four-wave mixing; modulation instability
01 Pubblicazione su rivista::01a Articolo in rivista
Nonlinear parametric resonances in quasiperiodic dispersion oscillating fibers / Finot, Christophe; Sysoliatin, Alexej; Wabnitz, Stefan. - In: OPTICS COMMUNICATIONS. - ISSN 0030-4018. - 348:(2015), pp. 24-30. [10.1016/j.optcom.2015.03.019]
File allegati a questo prodotto
File Dimensione Formato  
Finot_Nonlinear-parametric_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.21 MB
Formato Adobe PDF
3.21 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1214390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact