Recent findings have shown that the expression of the seven trans-membrane G-protein-coupled CXCR4 (the receptor for the stromal cell-derived factor [SDF]-1 chemokine) is necessary for the entry of T-lymphotropic human immunodeficiency virus (HIV) strains, acting as a coreceptor of the CD4 molecule. In the human system, the role of CXCR4 in HIV infection has been determined through env-mediated cell fusion assays and confirmed by blocking viral entry in CD4+/CXCR4+ cells by SDF-1 pretreatment. We observed that the human megakaryoblastic CD4+ UT-7 cell line fails to express CXCR4 RNA and is fully resistant to HIV entry. Transfection of an expression vector containing the CXCR4 c-DNA rendered UT-7 cells readily infectable by different T-lymphotropic syncytium-inducing HIV-1 and HIV-2 isolates. Interestingly, HIV-1 infection of CXCR4 expressing UT-7 cells (named UT-7/fus) induces the formation of polynucleated cells through a process highly reminiscent of megakaryocytic differentiation and maturation. On the contrary, no morphologic changes were observed in HIV-2-infected UT-7/fus cells. These findings further strengthen the role of CXCR4 as a molecule necessary for the replication of T-lymphotropic HIV-1 and HIV-2 isolates and provide a useful model to study the functional role of CD4 coreceptors in HIV infection.

Human immunodeficiency virus (HIV)-resistant CD4+ UT-7 megakaryocytic human cell line becomes highly HIV-1 and HIV-2 susceptible upon CXCR4 transfection: induction of cell differentiation by HIV-1 infection / Baiocchi, M; Olivetta, E; Chelucci, C; Santarcangelo, A C; Bona, R; D'Aloja, P; Testa, U; Komatsu, N; Verani, P; Federico, M. - In: BLOOD. - ISSN 0006-4971. - 89:8(1997), p. 2670-8.

Human immunodeficiency virus (HIV)-resistant CD4+ UT-7 megakaryocytic human cell line becomes highly HIV-1 and HIV-2 susceptible upon CXCR4 transfection: induction of cell differentiation by HIV-1 infection

Baiocchi, M;d'Aloja, P;
1997

Abstract

Recent findings have shown that the expression of the seven trans-membrane G-protein-coupled CXCR4 (the receptor for the stromal cell-derived factor [SDF]-1 chemokine) is necessary for the entry of T-lymphotropic human immunodeficiency virus (HIV) strains, acting as a coreceptor of the CD4 molecule. In the human system, the role of CXCR4 in HIV infection has been determined through env-mediated cell fusion assays and confirmed by blocking viral entry in CD4+/CXCR4+ cells by SDF-1 pretreatment. We observed that the human megakaryoblastic CD4+ UT-7 cell line fails to express CXCR4 RNA and is fully resistant to HIV entry. Transfection of an expression vector containing the CXCR4 c-DNA rendered UT-7 cells readily infectable by different T-lymphotropic syncytium-inducing HIV-1 and HIV-2 isolates. Interestingly, HIV-1 infection of CXCR4 expressing UT-7 cells (named UT-7/fus) induces the formation of polynucleated cells through a process highly reminiscent of megakaryocytic differentiation and maturation. On the contrary, no morphologic changes were observed in HIV-2-infected UT-7/fus cells. These findings further strengthen the role of CXCR4 as a molecule necessary for the replication of T-lymphotropic HIV-1 and HIV-2 isolates and provide a useful model to study the functional role of CD4 coreceptors in HIV infection.
1997
CD4 Antigens; Cell Differentiation; HIV Envelope Protein gp120; HIV-1; HIV-2; Humans; Leukemia, Megakaryoblastic, Acute; Megakaryocytes; Membrane Proteins; Receptors, CXCR4; Receptors, HIV; Recombinant Fusion Proteins; Transfection; Tumor Cells, Cultured; Virus Replication
01 Pubblicazione su rivista::01a Articolo in rivista
Human immunodeficiency virus (HIV)-resistant CD4+ UT-7 megakaryocytic human cell line becomes highly HIV-1 and HIV-2 susceptible upon CXCR4 transfection: induction of cell differentiation by HIV-1 infection / Baiocchi, M; Olivetta, E; Chelucci, C; Santarcangelo, A C; Bona, R; D'Aloja, P; Testa, U; Komatsu, N; Verani, P; Federico, M. - In: BLOOD. - ISSN 0006-4971. - 89:8(1997), p. 2670-8.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1213103
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact