In this paper we deal with uniqueness of solutions to the following problem \[ \begincases \beginsplit & u_t-\Delta_p u=H(t,x,\nabla u) &\quad \textin\quad Q_T,\\ & u (t,x) =0 &\quad \texton\quad(0,T)\times \partial \Omega,\\ & u(0,x)=u_0(x) &\quad \displaystyle\textin \quad \Omega \endsplit \endcases \] where $Q_T=(0,T)\times \Omega$ is the parabolic cylinder, $\Omega$ is an open subset of $\mathbbR^N$, $N\ge2$, $1<p<N$, and the right hand side $\displaystyle H(t,x,\xi):(0,T)\times\Omega \times \mathbbR^N\to \mathbbR$ exhibits a superlinear growth with respect to the gradient term.

Comparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growth / Leonori, Tommaso; Martina, Magliocca; Magliocca, Martina. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - (2019).

Comparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growth

Tommaso Leonori;MAGLIOCCA, MARTINA
2019

Abstract

In this paper we deal with uniqueness of solutions to the following problem \[ \begincases \beginsplit & u_t-\Delta_p u=H(t,x,\nabla u) &\quad \textin\quad Q_T,\\ & u (t,x) =0 &\quad \texton\quad(0,T)\times \partial \Omega,\\ & u(0,x)=u_0(x) &\quad \displaystyle\textin \quad \Omega \endsplit \endcases \] where $Q_T=(0,T)\times \Omega$ is the parabolic cylinder, $\Omega$ is an open subset of $\mathbbR^N$, $N\ge2$, $1
Mathematics - Analysis of PDEs; Mathematics - Analysis of PDEs
01 Pubblicazione su rivista::01a Articolo in rivista
Comparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growth / Leonori, Tommaso; Martina, Magliocca; Magliocca, Martina. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - (2019).
File allegati a questo prodotto
File Dimensione Formato  
Leonori_Maglioccav_2.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 465.1 kB
Formato Adobe PDF
465.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1212361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact