The nuclear lamina is a fibrous structure at the nucleoplasmic surface of the inner nuclear membrane. Its assembly state is regulated by phosphorylation of its protein components, the lamins A, B, and C. The isoprenylation of the lamins is essential for their proper membrane anchoring and functionality. The content and the membrane association of nuclear lamins and the subcellular localization at light and electron microscopical levels were studied at different times of rat liver regeneration. This model for the good synchrony of the first cell cycle is particularly suited for the study of cell-cycle-dependent modifications and is particularly interesting for the increased protein prenylation found in S phase. The biochemical results show an increased lamin content in nuclear proteins in G1 phase and a decreased content in M phase, along with an enhanced cytosolic localization of A and C lamins at later stages. The morphological results show in M phase, also in nondividing cells, a decreased lamin-like immunoreactivity around the nucleus with an apparent nuclear lamina disassembly. These data emphasize the dynamic organization of nuclear lamina not only in mitosis but also in interphase. The reduction and partial solubilization of nuclear lamina in M phase suggest a reorganization of the nuclear envelope also in those cells that do not appear in mitosis but have replicated their DNA content that will result in a higher degree of polyploidy.

Nuclear lamina assembly in the first cell cycle of rat liver regeneration / Bruscalupi, Giovannella; DI CROCE, L.; Lamartina, S.; Zaccaria, M. L.; CIOFI LUZZATTO, A.; Trentalance, A.. - In: JOURNAL OF CELLULAR PHYSIOLOGY. - ISSN 0021-9541. - STAMPA. - 171:(1997), pp. 135-142. [10.1002/(SICI)1097-4652(199705)]

Nuclear lamina assembly in the first cell cycle of rat liver regeneration.

BRUSCALUPI, Giovannella;
1997

Abstract

The nuclear lamina is a fibrous structure at the nucleoplasmic surface of the inner nuclear membrane. Its assembly state is regulated by phosphorylation of its protein components, the lamins A, B, and C. The isoprenylation of the lamins is essential for their proper membrane anchoring and functionality. The content and the membrane association of nuclear lamins and the subcellular localization at light and electron microscopical levels were studied at different times of rat liver regeneration. This model for the good synchrony of the first cell cycle is particularly suited for the study of cell-cycle-dependent modifications and is particularly interesting for the increased protein prenylation found in S phase. The biochemical results show an increased lamin content in nuclear proteins in G1 phase and a decreased content in M phase, along with an enhanced cytosolic localization of A and C lamins at later stages. The morphological results show in M phase, also in nondividing cells, a decreased lamin-like immunoreactivity around the nucleus with an apparent nuclear lamina disassembly. These data emphasize the dynamic organization of nuclear lamina not only in mitosis but also in interphase. The reduction and partial solubilization of nuclear lamina in M phase suggest a reorganization of the nuclear envelope also in those cells that do not appear in mitosis but have replicated their DNA content that will result in a higher degree of polyploidy.
1997
01 Pubblicazione su rivista::01a Articolo in rivista
Nuclear lamina assembly in the first cell cycle of rat liver regeneration / Bruscalupi, Giovannella; DI CROCE, L.; Lamartina, S.; Zaccaria, M. L.; CIOFI LUZZATTO, A.; Trentalance, A.. - In: JOURNAL OF CELLULAR PHYSIOLOGY. - ISSN 0021-9541. - STAMPA. - 171:(1997), pp. 135-142. [10.1002/(SICI)1097-4652(199705)]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/120910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact