The 2-adic ring C∗-algebra Q2naturally contains a copy of the Cuntz algebra O2and, a fortiori, also of its diagonal subalgebra D2 with Cantor spectrum. This paper is aimed at studying the group AutD2(Q2) of the automorphisms of Q2fixing D2pointwise. It turns out that any such automorphism leaves O2globally invariant. Furthermore, the subgroup AutD2(Q2) is shown to be maximal abelian in Aut(Q2). Saying exactly what the group is amounts to understanding when an automorphism of O2that fixes D2pointwise extends to Q2. A complete answer is given for all localized automorphisms: these will extend if and only if they are the composition of a localized inner automorphism with a gauge automorphism.
Diagonal automorphisms of the 2-adic ring C∗-algebra / Aiello, Valeriano; Conti, Roberto; Rossi, Stefano. - In: QUARTERLY JOURNAL OF MATHEMATICS. - ISSN 0033-5606. - 69:3(2018), pp. 815-833. [10.1093/qmath/hax064]
Diagonal automorphisms of the 2-adic ring C∗-algebra
Aiello, Valeriano;Conti, Roberto;
2018
Abstract
The 2-adic ring C∗-algebra Q2naturally contains a copy of the Cuntz algebra O2and, a fortiori, also of its diagonal subalgebra D2 with Cantor spectrum. This paper is aimed at studying the group AutD2(Q2) of the automorphisms of Q2fixing D2pointwise. It turns out that any such automorphism leaves O2globally invariant. Furthermore, the subgroup AutD2(Q2) is shown to be maximal abelian in Aut(Q2). Saying exactly what the group is amounts to understanding when an automorphism of O2that fixes D2pointwise extends to Q2. A complete answer is given for all localized automorphisms: these will extend if and only if they are the composition of a localized inner automorphism with a gauge automorphism.File | Dimensione | Formato | |
---|---|---|---|
ACR02 - RIVISTA - VERSIONE FINALE - hax064.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.