We analyse infinitesimal deformations of pairs $(X,sF)$ with $sF$ a coherent sheaf on a smooth projective variety $X$ over an algebraically closed field of characteristic $0$. We describe a differential graded Lie algebra controlling the deformation problem, and we prove an analog of a Mukai-Artamkin Theorem about the trace map.
On deformations of pairs (manifold, coherent sheaf) / Iacono, Donatella; Manetti, Marco. - In: CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES. - ISSN 0008-414X. - (2019), pp. 1209-1241. [10.4153/CJM-2018-027-8]
On deformations of pairs (manifold, coherent sheaf)
Manetti, Marco
2019
Abstract
We analyse infinitesimal deformations of pairs $(X,sF)$ with $sF$ a coherent sheaf on a smooth projective variety $X$ over an algebraically closed field of characteristic $0$. We describe a differential graded Lie algebra controlling the deformation problem, and we prove an analog of a Mukai-Artamkin Theorem about the trace map.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Iacono_On-deformations-of-Pairs_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Contatta l'autore |
Iacono_On-deformations-of-Pairs_2019.pdf
accesso aperto
Note: https://arxiv.org/abs/1707.06612
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
388.52 kB
Formato
Adobe PDF
|
388.52 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.