We present a global variational approach to the L2-gradient flow of the area functional of cartesian surfaces through the study of the so-called weighted energy-dissipation (WED) functional. In particular, we prove a relaxation result which allows us to show that minimizers of the WED converge in a quantitatively prescribed way to gradient-flow trajectories of the relaxed area functional. The result is then extended to general parabolic quasilinear equations arising as gradient flows of convex functionals with linear growth.

A variational view at the time-dependent minimal surface equation / Spadaro, EMANUELE NUNZIO; Stefanelli, ULISSE MARIA GIOVANNI. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 11:4(2011), pp. 793-809. [10.1007/s00028-011-0111-5]

A variational view at the time-dependent minimal surface equation

Emanuele Spadaro;STEFANELLI, ULISSE MARIA GIOVANNI
2011

Abstract

We present a global variational approach to the L2-gradient flow of the area functional of cartesian surfaces through the study of the so-called weighted energy-dissipation (WED) functional. In particular, we prove a relaxation result which allows us to show that minimizers of the WED converge in a quantitatively prescribed way to gradient-flow trajectories of the relaxed area functional. The result is then extended to general parabolic quasilinear equations arising as gradient flows of convex functionals with linear growth.
2011
Gradient flows, weighted energy-dissipation, minimal surface equation
01 Pubblicazione su rivista::01a Articolo in rivista
A variational view at the time-dependent minimal surface equation / Spadaro, EMANUELE NUNZIO; Stefanelli, ULISSE MARIA GIOVANNI. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 11:4(2011), pp. 793-809. [10.1007/s00028-011-0111-5]
File allegati a questo prodotto
File Dimensione Formato  
Spadaro_A-variational-view_2011.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 251.13 kB
Formato Adobe PDF
251.13 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1200002
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact