In this note we show two results about k-DNF resolution. First we prove that there are CNF formulas which require exponential length refutations in resolution extended with parities of size k, but have polynomial length refutations in k-DNF resolution. Then we show that small proofs in tree-like k-DNF resolution and narrow proofs in dag-like resolution have the same proving power, over CNFs. This latter result is clearly implicit in Krajíček (1994) [24] but this direct proof is focused on resolution and provides information about refutation width.

A note about k-DNF resolution / Lauria, Massimo. - In: INFORMATION PROCESSING LETTERS. - ISSN 0020-0190. - 137:(2018), pp. 33-39. [10.1016/j.ipl.2018.04.014]

A note about k-DNF resolution

Lauria, Massimo
2018

Abstract

In this note we show two results about k-DNF resolution. First we prove that there are CNF formulas which require exponential length refutations in resolution extended with parities of size k, but have polynomial length refutations in k-DNF resolution. Then we show that small proofs in tree-like k-DNF resolution and narrow proofs in dag-like resolution have the same proving power, over CNFs. This latter result is clearly implicit in Krajíček (1994) [24] but this direct proof is focused on resolution and provides information about refutation width.
2018
k-DNF; proof complexity; resolution; theory of computation; theoretical computer science; signal processing; information systems; computer science applications1707, computer vision and pattern recognition
01 Pubblicazione su rivista::01a Articolo in rivista
A note about k-DNF resolution / Lauria, Massimo. - In: INFORMATION PROCESSING LETTERS. - ISSN 0020-0190. - 137:(2018), pp. 33-39. [10.1016/j.ipl.2018.04.014]
File allegati a questo prodotto
File Dimensione Formato  
Lauria_k-DNF-resolution_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 336.35 kB
Formato Adobe PDF
336.35 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1199294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact