In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R h as the number of parallel paths and the global network permeability P h as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P h of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R h. The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas. © 2010 Springer Science+Business Media, LLC.

Multiple pathways analysis of brain functional networks from eeg signals: An application to real data / DE VICO FALLANI, Fabrizio; Francisco Aparecido, Rodrigues; Luciano Da Fontoura, Costa; Astolfi, Laura; Cincotti, Febo; Mattia, Donatella; Salinari, Serenella; Babiloni, Fabio. - In: BRAIN TOPOGRAPHY. - ISSN 0896-0267. - 23:4(2011), pp. 344-354. [10.1007/s10548-010-0152-z]

Multiple pathways analysis of brain functional networks from eeg signals: An application to real data

DE VICO FALLANI, FABRIZIO;ASTOLFI, LAURA;CINCOTTI, FEBO;SALINARI, Serenella;BABILONI, Fabio
2011

Abstract

In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R h as the number of parallel paths and the global network permeability P h as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P h of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R h. The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas. © 2010 Springer Science+Business Media, LLC.
2011
cortical networks; graph theory; permeability; redundancy; spinal cord injury
01 Pubblicazione su rivista::01a Articolo in rivista
Multiple pathways analysis of brain functional networks from eeg signals: An application to real data / DE VICO FALLANI, Fabrizio; Francisco Aparecido, Rodrigues; Luciano Da Fontoura, Costa; Astolfi, Laura; Cincotti, Febo; Mattia, Donatella; Salinari, Serenella; Babiloni, Fabio. - In: BRAIN TOPOGRAPHY. - ISSN 0896-0267. - 23:4(2011), pp. 344-354. [10.1007/s10548-010-0152-z]
File allegati a questo prodotto
File Dimensione Formato  
VE_2011_11573-119858.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 726.46 kB
Formato Adobe PDF
726.46 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/119858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact