In this paper, we prove an existence result to the problem -Δu=-u-p-1uu=0in Ω on∂Ωwhere Ω is a bounded domain in ℝNwhich is a perturbation of the annulus. Then there exists a sequence p1<p2 < ⋯ with lim pκ =κ → +∞+∞ such that for any real number p > 1 and p 6 ≠ pκ there exist at least one solution with m nodal zones. In doing so, we also investigate the radial nodal solution in an annulus: we provide an estimate of its Morse index and analyze the asymptotic behavior as p → 1.

Nodal solutions for Lane-Emden problems in almost-annular domains / Amadori, Anna Lisa; Gladiali, Francesca; Grossi, Massimo. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 31:3-4(2018), pp. 257-272.

Nodal solutions for Lane-Emden problems in almost-annular domains

Grossi, Massimo
2018

Abstract

In this paper, we prove an existence result to the problem -Δu=-u-p-1uu=0in Ω on∂Ωwhere Ω is a bounded domain in ℝNwhich is a perturbation of the annulus. Then there exists a sequence p1 1 and p 6 ≠ pκ there exist at least one solution with m nodal zones. In doing so, we also investigate the radial nodal solution in an annulus: we provide an estimate of its Morse index and analyze the asymptotic behavior as p → 1.
2018
analysis; applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Nodal solutions for Lane-Emden problems in almost-annular domains / Amadori, Anna Lisa; Gladiali, Francesca; Grossi, Massimo. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 31:3-4(2018), pp. 257-272.
File allegati a questo prodotto
File Dimensione Formato  
Amadori_Nodal_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 359.88 kB
Formato Adobe PDF
359.88 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1196537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact