This research aims at ascertaining the existence and characteristics of natural long-term capture orbits around a celestial body of potential interest. The problem is investigated in the dynamical framework of the three-dimensional circular restricted three-body problem. Previous numerical work on two-dimensional trajectories provided numerical evidence of Conley’s theorem, proving that long-term capture orbits are topologically located near trajectories asymptotic to periodic libration point orbits. This work intends to extend the previous investigations to three-dimensional paths. In this dynamical context, several special trajectories exist, such as quasiperiodic orbits. These can be found as special solutions to the linear expansion of the dynamics equations and have already been proven to exist even using the nonlinear equations of motion. The nature of long-term capture orbits is thus investigated in relation to the dynamical conditions that correspond to asymptotic trajectories converging into quasiperiodic orbits. The analysis results in the definition of two parameters characterizing capture condition and the design of a capture strategy, guiding a spacecraft into long-term capture orbits around one of the primaries. Both the results are validated through numerical simulations of the three-dimensional nonlinear dynamics, including fourth-body perturbation, with special focus on the Jupiter–Ganymede system and the Earth–Moon system.
Long-term capture orbits for low-energy space missions / Carletta, Stefano; Pontani, Mauro; Teofilatto, Paolo. - In: CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY. - ISSN 0923-2958. - 130:7(2018). [10.1007/s10569-018-9843-7]
Long-term capture orbits for low-energy space missions
Carletta, Stefano
;Pontani, Mauro;Teofilatto, Paolo
2018
Abstract
This research aims at ascertaining the existence and characteristics of natural long-term capture orbits around a celestial body of potential interest. The problem is investigated in the dynamical framework of the three-dimensional circular restricted three-body problem. Previous numerical work on two-dimensional trajectories provided numerical evidence of Conley’s theorem, proving that long-term capture orbits are topologically located near trajectories asymptotic to periodic libration point orbits. This work intends to extend the previous investigations to three-dimensional paths. In this dynamical context, several special trajectories exist, such as quasiperiodic orbits. These can be found as special solutions to the linear expansion of the dynamics equations and have already been proven to exist even using the nonlinear equations of motion. The nature of long-term capture orbits is thus investigated in relation to the dynamical conditions that correspond to asymptotic trajectories converging into quasiperiodic orbits. The analysis results in the definition of two parameters characterizing capture condition and the design of a capture strategy, guiding a spacecraft into long-term capture orbits around one of the primaries. Both the results are validated through numerical simulations of the three-dimensional nonlinear dynamics, including fourth-body perturbation, with special focus on the Jupiter–Ganymede system and the Earth–Moon system.File | Dimensione | Formato | |
---|---|---|---|
Carletta_long-term-capture_2018_postprint.pdf
solo gestori archivio
Note: Post-print dell'autore
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Contatta l'autore |
Carletta_Long-term-capture_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.72 MB
Formato
Adobe PDF
|
3.72 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.