Statistical inference on the circle may strongly depend on the chosen reference system. Here, we introduce necessary and sucient conditions to avoid inferential problems and misinterpretation of parameter estimates for any circular distribution. The construction of invariant distributions, with respect to the reference system, is discussed by introducing specic properties. Numerical examples on articial and real data are presented to corroborate and illustrate theoretical results.

Invariance properties and statistical inference for circular data / Mastrantonio, Gianluca; JONA LASINIO, Giovanna; Maruotti, Antonello; Calise, Gianfranco. - In: STATISTICA SINICA. - ISSN 1017-0405. - (2017), pp. 1-30. [10.5705/ss.202016.0067]

Invariance properties and statistical inference for circular data

Mastrantonio Gianluca;Lasinio Giovanna Jona;Maruotti Antonello;Calise Gianfranco
2017

Abstract

Statistical inference on the circle may strongly depend on the chosen reference system. Here, we introduce necessary and sucient conditions to avoid inferential problems and misinterpretation of parameter estimates for any circular distribution. The construction of invariant distributions, with respect to the reference system, is discussed by introducing specic properties. Numerical examples on articial and real data are presented to corroborate and illustrate theoretical results.
2017
circular data; initial direction; invariance; orientation
01 Pubblicazione su rivista::01a Articolo in rivista
Invariance properties and statistical inference for circular data / Mastrantonio, Gianluca; JONA LASINIO, Giovanna; Maruotti, Antonello; Calise, Gianfranco. - In: STATISTICA SINICA. - ISSN 1017-0405. - (2017), pp. 1-30. [10.5705/ss.202016.0067]
File allegati a questo prodotto
File Dimensione Formato  
Mastrantonio_Invariance-properties_2017.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1188393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact