Model updating methodologies allow the improvement of the accuracy of an initial finite element (FE) model to get the predicted and measured dynamic properties closer. In this way, the updated FE model is more representative of the actual dynamic behavior of the structure under investigation, thus giving the opportunity to use it for further investigations. In this paper a response-based updating methodology using neural networks is proposed. The neural networks used in this study have a feed-forward architecture, their inputs are the amplitude FRFs and their outputs are the physical properties of the structure under investigation, in terms of its elemental mass and stiffness that allow improving the correlation between the predicted and measured modal parameters. In order to evaluate the effectiveness of the proposed updating approach both numerical and experimental analyses are carried out on simple cantilever beams. Furthermore, the influence of some setting parameters on the accuracy of the solution is investigated.

FRF-based model updating using neural networks / Neri, Roberto; Arras, Melissa; Coppotelli, Giuliano. - (2016), pp. 3243-3257. (Intervento presentato al convegno 27th International Conference on Noise and Vibration Engineering, ISMA 2016 and International Conference on Uncertainty in Structural Dynamics, USD2016; tenutosi a Leuven, Belgium).

FRF-based model updating using neural networks

Melissa Arras
Membro del Collaboration Group
;
Giuliano Coppotelli
Membro del Collaboration Group
2016

Abstract

Model updating methodologies allow the improvement of the accuracy of an initial finite element (FE) model to get the predicted and measured dynamic properties closer. In this way, the updated FE model is more representative of the actual dynamic behavior of the structure under investigation, thus giving the opportunity to use it for further investigations. In this paper a response-based updating methodology using neural networks is proposed. The neural networks used in this study have a feed-forward architecture, their inputs are the amplitude FRFs and their outputs are the physical properties of the structure under investigation, in terms of its elemental mass and stiffness that allow improving the correlation between the predicted and measured modal parameters. In order to evaluate the effectiveness of the proposed updating approach both numerical and experimental analyses are carried out on simple cantilever beams. Furthermore, the influence of some setting parameters on the accuracy of the solution is investigated.
2016
27th International Conference on Noise and Vibration Engineering, ISMA 2016 and International Conference on Uncertainty in Structural Dynamics, USD2016;
modal analysis; structural updating; neural network
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
FRF-based model updating using neural networks / Neri, Roberto; Arras, Melissa; Coppotelli, Giuliano. - (2016), pp. 3243-3257. (Intervento presentato al convegno 27th International Conference on Noise and Vibration Engineering, ISMA 2016 and International Conference on Uncertainty in Structural Dynamics, USD2016; tenutosi a Leuven, Belgium).
File allegati a questo prodotto
File Dimensione Formato  
Coppotelli_frf-based-model_2016.pdf

solo gestori archivio

Note: http://past.isma-isaac.be/downloads/isma2016/papers/isma2016_0250.pdf
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 927.19 kB
Formato Adobe PDF
927.19 kB Adobe PDF   Contatta l'autore
Neri_copertina_frf-based_2016.png

solo gestori archivio

Note: copertina CD-ROM
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.3 MB
Formato image/png
1.3 MB image/png   Contatta l'autore
Neri_frontespizio_frf-based_2016.pdf

solo gestori archivio

Note: frontespizio
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 115.15 kB
Formato Adobe PDF
115.15 kB Adobe PDF   Contatta l'autore
Neri_indice_frf-based_2016.pdf

solo gestori archivio

Note: Indice
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 17.3 kB
Formato Adobe PDF
17.3 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1184918
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact