Model updating methodologies allow the improvement of the accuracy of an initial finite element (FE) model to get the predicted and measured dynamic properties closer. In this way, the updated FE model is more representative of the actual dynamic behavior of the structure under investigation, thus giving the opportunity to use it for further investigations. In this paper a response-based updating methodology using neural networks is proposed. The neural networks used in this study have a feed-forward architecture, their inputs are the amplitude FRFs and their outputs are the physical properties of the structure under investigation, in terms of its elemental mass and stiffness that allow improving the correlation between the predicted and measured modal parameters. In order to evaluate the effectiveness of the proposed updating approach both numerical and experimental analyses are carried out on simple cantilever beams. Furthermore, the influence of some setting parameters on the accuracy of the solution is investigated.
FRF-based model updating using neural networks / Neri, Roberto; Arras, Melissa; Coppotelli, Giuliano. - (2016), pp. 3243-3257. (Intervento presentato al convegno 27th International Conference on Noise and Vibration Engineering, ISMA 2016 and International Conference on Uncertainty in Structural Dynamics, USD2016; tenutosi a Leuven, Belgium).
FRF-based model updating using neural networks
Melissa ArrasMembro del Collaboration Group
;Giuliano Coppotelli
Membro del Collaboration Group
2016
Abstract
Model updating methodologies allow the improvement of the accuracy of an initial finite element (FE) model to get the predicted and measured dynamic properties closer. In this way, the updated FE model is more representative of the actual dynamic behavior of the structure under investigation, thus giving the opportunity to use it for further investigations. In this paper a response-based updating methodology using neural networks is proposed. The neural networks used in this study have a feed-forward architecture, their inputs are the amplitude FRFs and their outputs are the physical properties of the structure under investigation, in terms of its elemental mass and stiffness that allow improving the correlation between the predicted and measured modal parameters. In order to evaluate the effectiveness of the proposed updating approach both numerical and experimental analyses are carried out on simple cantilever beams. Furthermore, the influence of some setting parameters on the accuracy of the solution is investigated.File | Dimensione | Formato | |
---|---|---|---|
Coppotelli_frf-based-model_2016.pdf
solo gestori archivio
Note: http://past.isma-isaac.be/downloads/isma2016/papers/isma2016_0250.pdf
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
927.19 kB
Formato
Adobe PDF
|
927.19 kB | Adobe PDF | Contatta l'autore |
Neri_copertina_frf-based_2016.png
solo gestori archivio
Note: copertina CD-ROM
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.3 MB
Formato
image/png
|
1.3 MB | image/png | Contatta l'autore |
Neri_frontespizio_frf-based_2016.pdf
solo gestori archivio
Note: frontespizio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
115.15 kB
Formato
Adobe PDF
|
115.15 kB | Adobe PDF | Contatta l'autore |
Neri_indice_frf-based_2016.pdf
solo gestori archivio
Note: Indice
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
17.3 kB
Formato
Adobe PDF
|
17.3 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.