The effects of the active ingredient of Cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), and of the highly addictive drug heroin on in vivo dopamine transmission in the nucleus accumbens were compared in Sprague-Dawley rats by brain microdialysis. Delta9-THC and heroin increased extracellular dopamine concentrations selectively in the shell of the nucleus accumbens; these effects were mimicked by the synthetic cannabinoid agonist WIN55212-2. SR141716A, an antagonist of central cannabinoid receptors, prevented the effects of Delta9-THC but not those of heroin. Naloxone, a generic opioid antagonist, administered systemically, or naloxonazine, an antagonist of micro1 opioid receptors, infused into the ventral tegmentum, prevented the action of cannabinoids and heroin on dopamine transmission. Thus, Delta9-THC and heroin exert similar effects on mesolimbic dopamine transmission through a common mu1 opioid receptor mechanism located in the ventral mesencephalic tegmentum.
Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism / Tanda, G; Pontieri, FRANCESCO ERNESTO; DI CHIARA, G.. - In: SCIENCE. - ISSN 0036-8075. - STAMPA. - 276:(1997), pp. 2048-2050.
Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism.
PONTIERI, FRANCESCO ERNESTO;
1997
Abstract
The effects of the active ingredient of Cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), and of the highly addictive drug heroin on in vivo dopamine transmission in the nucleus accumbens were compared in Sprague-Dawley rats by brain microdialysis. Delta9-THC and heroin increased extracellular dopamine concentrations selectively in the shell of the nucleus accumbens; these effects were mimicked by the synthetic cannabinoid agonist WIN55212-2. SR141716A, an antagonist of central cannabinoid receptors, prevented the effects of Delta9-THC but not those of heroin. Naloxone, a generic opioid antagonist, administered systemically, or naloxonazine, an antagonist of micro1 opioid receptors, infused into the ventral tegmentum, prevented the action of cannabinoids and heroin on dopamine transmission. Thus, Delta9-THC and heroin exert similar effects on mesolimbic dopamine transmission through a common mu1 opioid receptor mechanism located in the ventral mesencephalic tegmentum.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.