This contribution presents a surface-integral-equation-based computational method to analyze scattering by objects with strongly discontinuous surface impedance parameters. As an example of the application of the method, the response of a PEC-PMC sphere is analyzed, revealing unexpected and strongly anisotropic scattering behavior.

Analysis of scatterers with discontinuous impedance boundary condition using surface-integral-equation method / Kong, B. B.; Ylä-Oijala, P.; Astorino, M. D.; Wallén, H.; Sihvola, A.. - (2018), pp. 225-227. (Intervento presentato al convegno 12th International Congress on Artificial Materials for Novel Wave phenomena tenutosi a Espoo, Finland).

Analysis of scatterers with discontinuous impedance boundary condition using surface-integral-equation method

M. D. Astorino;
2018

Abstract

This contribution presents a surface-integral-equation-based computational method to analyze scattering by objects with strongly discontinuous surface impedance parameters. As an example of the application of the method, the response of a PEC-PMC sphere is analyzed, revealing unexpected and strongly anisotropic scattering behavior.
2018
12th International Congress on Artificial Materials for Novel Wave phenomena
scattering; impedance boundary condition; surface-integral-equation method; computational method
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Analysis of scatterers with discontinuous impedance boundary condition using surface-integral-equation method / Kong, B. B.; Ylä-Oijala, P.; Astorino, M. D.; Wallén, H.; Sihvola, A.. - (2018), pp. 225-227. (Intervento presentato al convegno 12th International Congress on Artificial Materials for Novel Wave phenomena tenutosi a Espoo, Finland).
File allegati a questo prodotto
File Dimensione Formato  
Proceedings_Metamaterials_2018_Maria_Denise_Astorino.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1180712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact