We study the controllability of the multidimensional wave equation in a bounded domain with Dirichlet boundary condition, in which the support of the control is allowed to change over time. The exact controllability is reduced to the proof of the observability inequality, which is proven by a multiplier method. Besides our main results, we present some applications.

Variable Support Control for the Wave Equation - A Multiplier Approach / Loreti, Paola; Andreucci, Daniele; Agresti, Antonio. - (2018), pp. 33-42. (Intervento presentato al convegno 5th International Conference on Informatics in Control, Automation and Robotics tenutosi a Porto; Portogallo) [10.5220/0006832600430052].

Variable Support Control for the Wave Equation - A Multiplier Approach

Loreti, Paola;Andreucci, Daniele;Agresti, Antonio
2018

Abstract

We study the controllability of the multidimensional wave equation in a bounded domain with Dirichlet boundary condition, in which the support of the control is allowed to change over time. The exact controllability is reduced to the proof of the observability inequality, which is proven by a multiplier method. Besides our main results, we present some applications.
2018
5th International Conference on Informatics in Control, Automation and Robotics
Exact Controllability, Wave Equation, Variable Control Subset, Multiplier.
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Variable Support Control for the Wave Equation - A Multiplier Approach / Loreti, Paola; Andreucci, Daniele; Agresti, Antonio. - (2018), pp. 33-42. (Intervento presentato al convegno 5th International Conference on Informatics in Control, Automation and Robotics tenutosi a Porto; Portogallo) [10.5220/0006832600430052].
File allegati a questo prodotto
File Dimensione Formato  
ICINCO_2018_26.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 252.76 kB
Formato Adobe PDF
252.76 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1180122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact