The Directive 2014/94/UE (DAFI, Alternative Fuel Initiative Directive) on the deployment of alternative fuels (i.e. hydrogen) infrastructures has been recently transposed into national law in Italy. Consequently, the technical regulation on fire prevention for H2fuelling stations has been updated, in order to consider the current maximum delivery pressure (700 bar) of gaseous hydrogen for road vehicles. This technical regulation establishes the prescriptive safety distance from a piece of equipment. In the case of a new station, an assessment of the frequency of the event and its potential consequences is necessary. This is to understand which risk can reasonably be mitigated by a safety distance or whether additional mitigation or prevention measures should be taken. This paper presents the quantitative risk assessment (QRA) study on a hydrogen station planned to be installed, study which aims at determining the safety distances. Such study utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Model (HyRAM), to calculate risk values when developing risk-equivalent plans. HyRAM combines reduced order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Thanks to HyRAM tool it is possible to estimate physical effects and consequences on people and structures and plants, related to risk scenarios, by means of a damage model library. Use of risk assessment may allow station owners and designers to flexibly define station-specific mitigations, with the purpose of achieving equal or better levels of safety with respect to prescriptive recommendation levels, as suggested by ISO19880-1 (2018).

Quantitative risk assessment on a hydrogen refuelling station / Russo, Paola; DE MARCO, Alessandra; Mazzaro, Michele; Capobianco, Luigi. - In: CHEMICAL ENGINEERING TRANSACTIONS. - ISSN 2283-9216. - 67:(2018), pp. 739-744. [10.3303/CET1867124]

Quantitative risk assessment on a hydrogen refuelling station

Russo, Paola
;
DE MARCO, ALESSANDRA;Mazzaro, Michele;Capobianco, Luigi
2018

Abstract

The Directive 2014/94/UE (DAFI, Alternative Fuel Initiative Directive) on the deployment of alternative fuels (i.e. hydrogen) infrastructures has been recently transposed into national law in Italy. Consequently, the technical regulation on fire prevention for H2fuelling stations has been updated, in order to consider the current maximum delivery pressure (700 bar) of gaseous hydrogen for road vehicles. This technical regulation establishes the prescriptive safety distance from a piece of equipment. In the case of a new station, an assessment of the frequency of the event and its potential consequences is necessary. This is to understand which risk can reasonably be mitigated by a safety distance or whether additional mitigation or prevention measures should be taken. This paper presents the quantitative risk assessment (QRA) study on a hydrogen station planned to be installed, study which aims at determining the safety distances. Such study utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Model (HyRAM), to calculate risk values when developing risk-equivalent plans. HyRAM combines reduced order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Thanks to HyRAM tool it is possible to estimate physical effects and consequences on people and structures and plants, related to risk scenarios, by means of a damage model library. Use of risk assessment may allow station owners and designers to flexibly define station-specific mitigations, with the purpose of achieving equal or better levels of safety with respect to prescriptive recommendation levels, as suggested by ISO19880-1 (2018).
2018
chemical engineering (all); alternative fuels; risk analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Quantitative risk assessment on a hydrogen refuelling station / Russo, Paola; DE MARCO, Alessandra; Mazzaro, Michele; Capobianco, Luigi. - In: CHEMICAL ENGINEERING TRANSACTIONS. - ISSN 2283-9216. - 67:(2018), pp. 739-744. [10.3303/CET1867124]
File allegati a questo prodotto
File Dimensione Formato  
Russo_Quantitative-risk-assessment_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 763.38 kB
Formato Adobe PDF
763.38 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1179691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact