The article is devoted to the development of the italian schools of the projective differential geometry of G. Fubini, C. Segre, A. Terracini. The theory of differen-tial forms and the first rigidity theorem of G. Fubini, the questions of С. Segre’s tangents, the classification of secant–defective and tangent-defective varieties of A. Terracini, as well as their evolution and influence on the development of actual problems of the projective differential geometry are considered.

Геометрия в Италии в первой половине XX века. Geometry in Italy in the first half of the 20th century / Dulina, Anastasiia. - In: NAUCNYJ FORUM: TEHNICESKIE I FIZIKO-MATEMATICESKIE NAUKI. - ISSN 2541-8394. - 9(19):(2018), pp. 40-45.

Геометрия в Италии в первой половине XX века. Geometry in Italy in the first half of the 20th century

DULINA, ANASTASIIA
Primo
Writing – Original Draft Preparation
2018

Abstract

The article is devoted to the development of the italian schools of the projective differential geometry of G. Fubini, C. Segre, A. Terracini. The theory of differen-tial forms and the first rigidity theorem of G. Fubini, the questions of С. Segre’s tangents, the classification of secant–defective and tangent-defective varieties of A. Terracini, as well as their evolution and influence on the development of actual problems of the projective differential geometry are considered.
2018
Projective differential geometry; differential forms; rigidity theorem; linear projective element; Laplace equations; projective differential invariant
01 Pubblicazione su rivista::01a Articolo in rivista
Геометрия в Италии в первой половине XX века. Geometry in Italy in the first half of the 20th century / Dulina, Anastasiia. - In: NAUCNYJ FORUM: TEHNICESKIE I FIZIKO-MATEMATICESKIE NAUKI. - ISSN 2541-8394. - 9(19):(2018), pp. 40-45.
File allegati a questo prodotto
File Dimensione Formato  
Dulina_Geometry-in-Italy.pdf

accesso aperto

Note: https://nauchforum.ru/conf/tech/xx/40955
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 160.62 kB
Formato Adobe PDF
160.62 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1173067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact