We exploit prediction capabilities of the moving-boundary model for food isothermal drying proposed in Adrover et al. (2019). We apply the model to two different sets of literature experimental data resulting from the air-drying process of eggplant cylinders (two-dimensional problem) and potatoes slices (three-dimensional problem). These two food materials, both exhibiting non-ideal shrinkage, are characterized by very different “calibration curves“ i.e. different behaviours of volume reduction V/V0as a function of the rescaled moisture content X/X0. The purpose is twofold: to validate the model for different food materials and different sample geometries and to propose a simpler numerical approach for estimating the shrinkage factor, thus bypassing too lengthy analytical calculations and developing a general method that can be easily applied to any sample geometry and any food material characterized by a non-linear calibration curve.
A moving boundary model for food isothermal drying and shrinkage. A shortcut numerical method for estimating the shrinkage factor / Adrover, A; Brasiello, A.; Ponso, G.. - In: JOURNAL OF FOOD ENGINEERING. - ISSN 0260-8774. - 244:(2019), pp. 212-219. [10.1016/j.jfoodeng.2018.09.030]
A moving boundary model for food isothermal drying and shrinkage. A shortcut numerical method for estimating the shrinkage factor
A Adrover
Primo
;A. BrasielloSecondo
;
2019
Abstract
We exploit prediction capabilities of the moving-boundary model for food isothermal drying proposed in Adrover et al. (2019). We apply the model to two different sets of literature experimental data resulting from the air-drying process of eggplant cylinders (two-dimensional problem) and potatoes slices (three-dimensional problem). These two food materials, both exhibiting non-ideal shrinkage, are characterized by very different “calibration curves“ i.e. different behaviours of volume reduction V/V0as a function of the rescaled moisture content X/X0. The purpose is twofold: to validate the model for different food materials and different sample geometries and to propose a simpler numerical approach for estimating the shrinkage factor, thus bypassing too lengthy analytical calculations and developing a general method that can be easily applied to any sample geometry and any food material characterized by a non-linear calibration curve.File | Dimensione | Formato | |
---|---|---|---|
Adrover_A-moving-boundary_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.