We consider a Hamiltonian describing three quantum particles in dimension one interacting through two-body short-range potentials. We prove that, as a suitable scale parameter in the potential terms goes to zero, such a Hamiltonian converges to one with zero-range (also called delta or point) interactions. The convergence is understood in the norm resolvent sense. The two-body rescaled potentials are of the form vσϵ(xσ)=ϵ-1vσ(ϵ-1xσ), where σ = 23, 12, 31 is an index that runs over all the possible pairings of the three particles, xσis the relative coordinate between two particles, and ϵ is the scale parameter. The limiting Hamiltonian is the one formally obtained by replacing the potentials vσ with ασδσ, where δσis the Dirac delta-distribution centered on the coincidence hyperplane xσ= 0 and ασ= Rvσdxσ. To prove the convergence of the resolvents, we make use of Faddeev's equations.

The three-body problem in dimension one: from short-range to contact interactions / Basti, Giulia; Cacciapuoti, Claudio; Finco, Domenico; Teta, Alessandro. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 59:7(2018), p. 072104. [10.1063/1.5030170]

The three-body problem in dimension one: from short-range to contact interactions

Basti Giulia;Cacciapuoti Claudio;Finco Domenico;Teta Alessandro
2018

Abstract

We consider a Hamiltonian describing three quantum particles in dimension one interacting through two-body short-range potentials. We prove that, as a suitable scale parameter in the potential terms goes to zero, such a Hamiltonian converges to one with zero-range (also called delta or point) interactions. The convergence is understood in the norm resolvent sense. The two-body rescaled potentials are of the form vσϵ(xσ)=ϵ-1vσ(ϵ-1xσ), where σ = 23, 12, 31 is an index that runs over all the possible pairings of the three particles, xσis the relative coordinate between two particles, and ϵ is the scale parameter. The limiting Hamiltonian is the one formally obtained by replacing the potentials vσ with ασδσ, where δσis the Dirac delta-distribution centered on the coincidence hyperplane xσ= 0 and ασ= Rvσdxσ. To prove the convergence of the resolvents, we make use of Faddeev's equations.
2018
three-body problem; contact interactions; zero-range limit
01 Pubblicazione su rivista::01a Articolo in rivista
The three-body problem in dimension one: from short-range to contact interactions / Basti, Giulia; Cacciapuoti, Claudio; Finco, Domenico; Teta, Alessandro. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 59:7(2018), p. 072104. [10.1063/1.5030170]
File allegati a questo prodotto
File Dimensione Formato  
Basti_Three-body_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 472.41 kB
Formato Adobe PDF
472.41 kB Adobe PDF   Contatta l'autore
Basti_preprint_Three-body_2018.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 381.38 kB
Formato Adobe PDF
381.38 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1172594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 8
social impact