The compressive and shear behavior of masonry is here studied both experimental- ly and numerically. An experimental campaign has been carried out on 9 square-shaped one leaf masonry panels, reproducing historical masonry. Tests have been done for evaluating the elastic and shear moduli in both plane directions, with 6 panels rotated by 90 degrees, lead- ing to vertically aligned bed joints, and 3 panels maintained with horizontal bed joints. Com- pressive tests were executed on 6 masonry panels, 3 of them rotated by 90 degrees. Initial shear strength and shear modulus parallel to bed joints are evaluated through shear tests on 9 masonry triplets. Shear tests are performed on 3 rotated panels, applying an horizontal dis- tributed load, without vertical compression. Attention is paid to the service load state: only the initial phase of the tests is studied. Numerical models are proposed for representing actu- al masonry behavior, both discrete [1] and continuous [2,3], standard and micropolar, ob- tained by homogenization procedures [4]. Several numerical analyses are performed for simulating the experimental tests on masonry triplets and panels. The mechanical elastic pa- rameters of both discrete and continuous models are calibrated starting from laboratory data of masonry constituents and then by fitting the results of the initial phases of the experimental tests on masonry specimens.

Compressive and shear behaviour of masonry panels: experimentation and numerical analysis / Baraldi, D.; Reccia, E.; Cecchi, A.. - (2018), pp. 1472-1482. (Intervento presentato al convegno 10th IMC International Masonry Conference tenutosi a Milano).

Compressive and shear behaviour of masonry panels: experimentation and numerical analysis

E. Reccia;
2018

Abstract

The compressive and shear behavior of masonry is here studied both experimental- ly and numerically. An experimental campaign has been carried out on 9 square-shaped one leaf masonry panels, reproducing historical masonry. Tests have been done for evaluating the elastic and shear moduli in both plane directions, with 6 panels rotated by 90 degrees, lead- ing to vertically aligned bed joints, and 3 panels maintained with horizontal bed joints. Com- pressive tests were executed on 6 masonry panels, 3 of them rotated by 90 degrees. Initial shear strength and shear modulus parallel to bed joints are evaluated through shear tests on 9 masonry triplets. Shear tests are performed on 3 rotated panels, applying an horizontal dis- tributed load, without vertical compression. Attention is paid to the service load state: only the initial phase of the tests is studied. Numerical models are proposed for representing actu- al masonry behavior, both discrete [1] and continuous [2,3], standard and micropolar, ob- tained by homogenization procedures [4]. Several numerical analyses are performed for simulating the experimental tests on masonry triplets and panels. The mechanical elastic pa- rameters of both discrete and continuous models are calibrated starting from laboratory data of masonry constituents and then by fitting the results of the initial phases of the experimental tests on masonry specimens.
2018
10th IMC International Masonry Conference
masonry; compressive behavior; in plane shear behavior; experimental tests; homogenization; discrete models
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Compressive and shear behaviour of masonry panels: experimentation and numerical analysis / Baraldi, D.; Reccia, E.; Cecchi, A.. - (2018), pp. 1472-1482. (Intervento presentato al convegno 10th IMC International Masonry Conference tenutosi a Milano).
File allegati a questo prodotto
File Dimensione Formato  
Baraldi_Compressive_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1172168
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact