Prokineticin1 and prokineticin2 belong to a new family of chemokines identified in several species including mammals and characterized by the presence of five disulfide bridges. These proteins signal through two G-coupled receptors (prokineticin-receptor1 and prokineticin-receptor2) widely expressed in all tissues and involved in a large spectrum of biological activities, including angiogenesis, hematopoiesis, immune processes, inflammation and nociceptive transmission. Prokineticin2 is overexpressed in inflamed tissues and has a crucial role in neutrophil dependent inflammation and hypernociception. Following tissue inflammation, peripheral nerve injury, cancer, bone metastasis the expression of prokineticin2 and of the prokineticin-receptor2 is increased also within dorsal root ganglia and spinal cord. Prokineticin receptors, highly expressed in nociceptor endings and dorsal root ganglia, exert a tonic activation of TRPV1 and TRPA1 contributing to peripheral sensitization. Prokineticin2-induced activation of the prokineticin receptors in the spinal dorsal horn and in activated astrocytes contributes to central sensitization and maintains chronic and neuropathic pain. Prokineticin2, acting on prokineticin receptors on monocytes, macrophages and dendritic cells, induces chemotaxis and release of inflammatory and pronociceptive cytokines. Hence, the prokineticin system represents a novel therapeutic target in chronic pain conditions. Evaluation of the mechanism of action of prokineticin2 and the potential effectiveness of its inhibition is discussed.

Targeting the prokineticin system to control chronic pain and inflammation / Negri, Lucia; Maftei, Daniela. - In: CURRENT MEDICINAL CHEMISTRY. - ISSN 0929-8673. - 25:32(2018), pp. 3883-3894. [10.2174/0929867324666170713102514]

Targeting the prokineticin system to control chronic pain and inflammation

Lucia negri
;
Daniela Maftei
2018

Abstract

Prokineticin1 and prokineticin2 belong to a new family of chemokines identified in several species including mammals and characterized by the presence of five disulfide bridges. These proteins signal through two G-coupled receptors (prokineticin-receptor1 and prokineticin-receptor2) widely expressed in all tissues and involved in a large spectrum of biological activities, including angiogenesis, hematopoiesis, immune processes, inflammation and nociceptive transmission. Prokineticin2 is overexpressed in inflamed tissues and has a crucial role in neutrophil dependent inflammation and hypernociception. Following tissue inflammation, peripheral nerve injury, cancer, bone metastasis the expression of prokineticin2 and of the prokineticin-receptor2 is increased also within dorsal root ganglia and spinal cord. Prokineticin receptors, highly expressed in nociceptor endings and dorsal root ganglia, exert a tonic activation of TRPV1 and TRPA1 contributing to peripheral sensitization. Prokineticin2-induced activation of the prokineticin receptors in the spinal dorsal horn and in activated astrocytes contributes to central sensitization and maintains chronic and neuropathic pain. Prokineticin2, acting on prokineticin receptors on monocytes, macrophages and dendritic cells, induces chemotaxis and release of inflammatory and pronociceptive cytokines. Hence, the prokineticin system represents a novel therapeutic target in chronic pain conditions. Evaluation of the mechanism of action of prokineticin2 and the potential effectiveness of its inhibition is discussed.
2018
prokineticin2; chronic pain; inflammation; nerve damage; prokineticin receptor antagonists; prokineticin receptors
01 Pubblicazione su rivista::01a Articolo in rivista
Targeting the prokineticin system to control chronic pain and inflammation / Negri, Lucia; Maftei, Daniela. - In: CURRENT MEDICINAL CHEMISTRY. - ISSN 0929-8673. - 25:32(2018), pp. 3883-3894. [10.2174/0929867324666170713102514]
File allegati a questo prodotto
File Dimensione Formato  
Negri_Targeting_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 780.81 kB
Formato Adobe PDF
780.81 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1171826
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact