Gravitational-wave astronomy has the potential to explore one of the deepest and most puzzling aspects of Einstein's theory: the existence of black holes. A plethora of ultracompact, horizonless objects have been proposed to arise in models inspired by quantum gravity. These objects may solve Hawking's information-loss paradox and the singularity problem associated with black holes, while mimicking almost all of their classical properties. They are, however, generically unstable on relatively short timescales. Here, we show that this 'ergoregion instability' leads to a strong stochastic background of gravitational waves, at a level detectable by current and future gravitational-wave detectors. The absence of such background in the first observation run of Advanced LIGO already imposes the most stringent limits to date on black-hole alternatives, showing that certain models of 'quantum-dressed' stellar black holes can be at most a small percentage of the total population. The future LISA mission will allow for similar constraints on supermassive black-hole mimickers.

The stochastic gravitational-wave background in the absence of horizons / Barausse, Enrico; PIRES BRITO, Richard; Cardoso, Vitor; Dvorkin, Irina; Pani, Paolo. - In: CLASSICAL AND QUANTUM GRAVITY. - ISSN 0264-9381. - 35:20(2018). [10.1088/1361-6382/aae1de]

The stochastic gravitational-wave background in the absence of horizons

Richard Brito;Paolo Pani
2018

Abstract

Gravitational-wave astronomy has the potential to explore one of the deepest and most puzzling aspects of Einstein's theory: the existence of black holes. A plethora of ultracompact, horizonless objects have been proposed to arise in models inspired by quantum gravity. These objects may solve Hawking's information-loss paradox and the singularity problem associated with black holes, while mimicking almost all of their classical properties. They are, however, generically unstable on relatively short timescales. Here, we show that this 'ergoregion instability' leads to a strong stochastic background of gravitational waves, at a level detectable by current and future gravitational-wave detectors. The absence of such background in the first observation run of Advanced LIGO already imposes the most stringent limits to date on black-hole alternatives, showing that certain models of 'quantum-dressed' stellar black holes can be at most a small percentage of the total population. The future LISA mission will allow for similar constraints on supermassive black-hole mimickers.
File allegati a questo prodotto
File Dimensione Formato  
Barausse_Stochastic_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1163791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact