In this paper we propose distributed strategies for the estimation of sparse vectors over adaptive networks. The measurements collected at different nodes are assumed to be spatially correlated and distributed according to a Gaussian Markov random field (GMRF) model. We derive optimal sparsity-aware algorithms that incorporate prior information about the statistical dependency among observations. Simulation results show the potential advantages of the proposed strategies for online recovery of sparse vectors.

Distributed least mean squares strategies for sparsity-aware estimation over Gaussian Markov random fields / Di Lorenzo, P.; Barbarossa, S.. - (2014), pp. 5472-5476. (Intervento presentato al convegno IEEE International Conference on Acoustics, Speech, and Signal Processing tenutosi a Firenze) [10.1109/ICASSP.2014.6854649].

Distributed least mean squares strategies for sparsity-aware estimation over Gaussian Markov random fields

Di Lorenzo P.;Barbarossa S.
2014

Abstract

In this paper we propose distributed strategies for the estimation of sparse vectors over adaptive networks. The measurements collected at different nodes are assumed to be spatially correlated and distributed according to a Gaussian Markov random field (GMRF) model. We derive optimal sparsity-aware algorithms that incorporate prior information about the statistical dependency among observations. Simulation results show the potential advantages of the proposed strategies for online recovery of sparse vectors.
2014
IEEE International Conference on Acoustics, Speech, and Signal Processing
distributed least mean squares strategies; sparsity aware estimation; Gaussian Markov random fields; sparse vectors; adaptive networks
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Distributed least mean squares strategies for sparsity-aware estimation over Gaussian Markov random fields / Di Lorenzo, P.; Barbarossa, S.. - (2014), pp. 5472-5476. (Intervento presentato al convegno IEEE International Conference on Acoustics, Speech, and Signal Processing tenutosi a Firenze) [10.1109/ICASSP.2014.6854649].
File allegati a questo prodotto
File Dimensione Formato  
DiLorenzo_Distributed_2014.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 145.63 kB
Formato Adobe PDF
145.63 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1163478
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 0
social impact