We consider an irreducible continuous-time Markov chain on a finite state space and with time periodic jump rates and prove the joint large deviation principle for the empirical measure and flow and the joint large deviation principle for the empirical measure and current. By contraction, we get the large deviation principle of three types of entropy production flow. We derive some Gallavotti–Cohen duality relations and discuss some applications.

Level 2.5 large deviations for continuous-time Markov chains with time periodic rates / Bertini, L.; Chetrite, R.; Faggionato, A.; Gabrielli, D.. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 19:10(2018), pp. 3197-3238. [10.1007/s00023-018-0705-3]

Level 2.5 large deviations for continuous-time Markov chains with time periodic rates

L. Bertini
;
A. Faggionato;
2018

Abstract

We consider an irreducible continuous-time Markov chain on a finite state space and with time periodic jump rates and prove the joint large deviation principle for the empirical measure and flow and the joint large deviation principle for the empirical measure and current. By contraction, we get the large deviation principle of three types of entropy production flow. We derive some Gallavotti–Cohen duality relations and discuss some applications.
2018
statistical and nonlinear physics; nuclear and high energy physics; mathematical physics
01 Pubblicazione su rivista::01a Articolo in rivista
Level 2.5 large deviations for continuous-time Markov chains with time periodic rates / Bertini, L.; Chetrite, R.; Faggionato, A.; Gabrielli, D.. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 19:10(2018), pp. 3197-3238. [10.1007/s00023-018-0705-3]
File allegati a questo prodotto
File Dimensione Formato  
Bertini_Level-2.5-Large_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF   Contatta l'autore
Bertini_preprint_Level-2.5-Large_2018.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 456.03 kB
Formato Unknown
456.03 kB Unknown

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1162346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact