We consider some fully nonlinear degenerate elliptic operators and we investigate the validity of certain properties related to the maximum principle. In particular, we establish the equivalence between the sign propagation property and the strict positivity of a suitably defined generalized principal eigenvalue. Furthermore, we show that even in the degenerate case considered in the present paper, the well-known condition introduced by Keller–Osserman on the zero-order term is necessary and sufficient for the existence of entire weak subsolutions.

On some degenerate elliptic equations arising in geometric problems / Capuzzo Dolcetta, I.; Leoni, F.; Vitolo, A.. - In: JOURNAL OF MATHEMATICAL SCIENCES. - ISSN 1072-3374. - STAMPA. - 233:4(2018), pp. 446-461. [10.1007/s10958-018-3937-3]

On some degenerate elliptic equations arising in geometric problems

Capuzzo Dolcetta, I.;Leoni, F.;
2018

Abstract

We consider some fully nonlinear degenerate elliptic operators and we investigate the validity of certain properties related to the maximum principle. In particular, we establish the equivalence between the sign propagation property and the strict positivity of a suitably defined generalized principal eigenvalue. Furthermore, we show that even in the degenerate case considered in the present paper, the well-known condition introduced by Keller–Osserman on the zero-order term is necessary and sufficient for the existence of entire weak subsolutions.
2018
degenerate Pucci operators; partial laplacian; generalized principal eigenvalue; entire subsolutions
01 Pubblicazione su rivista::01a Articolo in rivista
On some degenerate elliptic equations arising in geometric problems / Capuzzo Dolcetta, I.; Leoni, F.; Vitolo, A.. - In: JOURNAL OF MATHEMATICAL SCIENCES. - ISSN 1072-3374. - STAMPA. - 233:4(2018), pp. 446-461. [10.1007/s10958-018-3937-3]
File allegati a questo prodotto
File Dimensione Formato  
CapuzzoDolcetta_On-some-degenerate_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 264.5 kB
Formato Adobe PDF
264.5 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1155907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact