QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that has been designed to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of o-= 30-200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the systematic error control of an interferometer. It will directly observe the sky through an array of 400 back-to-back entry horns whose signals will be superimposed using a quasi-optical beam combiner. The resulting interference fringes will be imaged at 150 and 220 GHz on two focal planes, each tiled with NbSi Transition Edge Sensors, cooled to 320 mK and read out with time-domain multiplexing. A dichroic filter placed between the optical combiner and the focal planes will select the two frequency bands. A very large receiver cryostat will cool the optical and detector stages to 40 K, 4 K, 1 K and 320 mK using two pulse tube coolers, a novel 4He sorption cooler and a double-stage 3He/4He sorption cooler. Polarisation modulation and selection will be achieved using a cold stepped half-wave plate (HWP) and polariser, respectively, in front of the sky-facing horns. A key feature of QUBIC's ability to control systematic effects is its â€self-calibration' mode where fringe patterns from individual equivalent baselines can be compared. When observing, however, all the horns will be open simultaneously and we will recover a synthetic image of the sky in the I, Q and U Stokes' parameters. The synthesised beam pattern has a central peak of approximately 0.5 degrees in width, with secondary peaks further out that are damped by the 13-degree primary beam of the horns. This is Module 1 of QUBIC which will be installed in Argentina, near the city of San Antonio de los Cobres, at the Alto Chorrillos site (4869 m a.s.l.), Salta Province. Simulations have shown that this first module could constrain the tensor-to-scalar ratio down to σ(r) = 0.01 after a two-year survey. We aim to add further modules in the future to increase the angular sensitivity and resolution of the instrument. The QUBIC project is proceeding through a sequence of steps. After an initial successful characterisation of the detection chain, a technological demonstrator is being assembled to validate the full instrument design and to test it electrically, thermally and optically. The technical demonstrator is a scaled-down version of Module 1 in terms of the number of detectors, input horns and pulse tubes and a reduction in the diameter of the combiner mirrors and filters, but is otherwise similar. The demonstrator will be upgraded to the full module in 2019. In this paper we give an overview of the QUBIC project and instrument.

QUBIC: The Q and U bolometric interferometer for cosmology / O'Sullivan, C.; Ade, P.; Amico, G.; Auguste, D.; Aumont, J.; Banfi, S.; Barbarán, G.; Battaglia, P.; Battistelli, E.; Baù, A.; Bélier, B.; Bennett, D.; Bergé, L.; Bernard, J. -Ph.; Bersanelli, M.; Bigot-Sazy, M. -A.; Bleurvacq, N.; Bonaparte, J.; Bonis, J.; Bordier, G.; Bréelle, E.; Bunn, E.; Burke, D.; Buzi, D.; Buzzelli, A.; Cavaliere, F.; Chanial, P.; Chapron, C.; Charlassier, R.; Columbro, F.; Coppi, G.; Coppolecchia, A.; Couchot, F.; D'Agostino, R.; D'Alessandro, G.; De Bernardis, P.; De Gasperis, G.; De Leo, M.; De Petris, M.; Di Donato, A.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Franceschet, C.; Gamboa Lerena, M. M.; García, B.; Garrido, X.; Gaspard, M.; Gault, A.; Gayer, D.; Gervasi, M.; Giard, M.; Giraud-Héraud, Y.; Gómez Berisso, M.; González, M.; Gradziel, M.; Grandsire, L.; Guerrard, E.; Hamilton, J. -Ch.; Harari, D.; Haynes, V.; Henrot-Versillé, S.; Hoang, D. T.; Incardona, F.; Jules, E.; Kaplan, J.; Korotkov, A.; Kristukat, C.; Lamagna, L.; Loucatos, S.; Louis, T.; Lowitz, A.; Lukovic, V.; Luterstein, R.; Maffei, B.; Marnieros, S.; Masi, S.; Mattei, A.; May, A.; Mcculloch, M.; Medina, M. C.; Mele, L.; Melhuish, S.; Mennella, A.; Montier, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Olivieri, E.; Paiella, A.; Pajot, F.; Passerini, A.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perdereau, O.; Pezzotta, F.; Piacentini, F.; Piat, M.; Piccirillo, L.; Pisano, G.; Polenta, G.; Prêle, D.; Puddu, R.; Rambaud, D.; Ringegni, P.; Romero, G. E.; Salatino, M.; Schillaci, A.; Scóccola, C. G.; Scully, S.; Spinelli, S.; Stolpovskiy, M.; Suarez, F.; Tartari, A.; Thermeau, J. -P.; Timbie, P.; Torchinsky, S. A.; Tristram, M.; Truongcanh, V.; Tucker, C.; Tucker, G.; Vanneste, S.; Viganò, D.; Vittorio, N.; Voisin, F.; Watson, B.; Wicek, F.; Zannoni, M.; Zullo, A.. - STAMPA. - 10708:(2018), p. 81. (Intervento presentato al convegno Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018 tenutosi a usa) [10.1117/12.2313332].

QUBIC: The Q and U bolometric interferometer for cosmology

Amico, G.;Battistelli, E.;Buzzelli, A.;Columbro, F.;Coppolecchia, A.;D'Alessandro, G.;De Bernardis, P.;De Gasperis, G.;De Leo, M.;De Petris, M.;Lamagna, L.;Masi, S.;Mele, L.;Paiella, A.;Piacentini, F.;Pisano, G.;
2018

Abstract

QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that has been designed to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of o-= 30-200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the systematic error control of an interferometer. It will directly observe the sky through an array of 400 back-to-back entry horns whose signals will be superimposed using a quasi-optical beam combiner. The resulting interference fringes will be imaged at 150 and 220 GHz on two focal planes, each tiled with NbSi Transition Edge Sensors, cooled to 320 mK and read out with time-domain multiplexing. A dichroic filter placed between the optical combiner and the focal planes will select the two frequency bands. A very large receiver cryostat will cool the optical and detector stages to 40 K, 4 K, 1 K and 320 mK using two pulse tube coolers, a novel 4He sorption cooler and a double-stage 3He/4He sorption cooler. Polarisation modulation and selection will be achieved using a cold stepped half-wave plate (HWP) and polariser, respectively, in front of the sky-facing horns. A key feature of QUBIC's ability to control systematic effects is its â€self-calibration' mode where fringe patterns from individual equivalent baselines can be compared. When observing, however, all the horns will be open simultaneously and we will recover a synthetic image of the sky in the I, Q and U Stokes' parameters. The synthesised beam pattern has a central peak of approximately 0.5 degrees in width, with secondary peaks further out that are damped by the 13-degree primary beam of the horns. This is Module 1 of QUBIC which will be installed in Argentina, near the city of San Antonio de los Cobres, at the Alto Chorrillos site (4869 m a.s.l.), Salta Province. Simulations have shown that this first module could constrain the tensor-to-scalar ratio down to σ(r) = 0.01 after a two-year survey. We aim to add further modules in the future to increase the angular sensitivity and resolution of the instrument. The QUBIC project is proceeding through a sequence of steps. After an initial successful characterisation of the detection chain, a technological demonstrator is being assembled to validate the full instrument design and to test it electrically, thermally and optically. The technical demonstrator is a scaled-down version of Module 1 in terms of the number of detectors, input horns and pulse tubes and a reduction in the diameter of the combiner mirrors and filters, but is otherwise similar. The demonstrator will be upgraded to the full module in 2019. In this paper we give an overview of the QUBIC project and instrument.
2018
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018
B-modes; bolometric interferometry; CMB; QUBIC; Electronic, Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
QUBIC: The Q and U bolometric interferometer for cosmology / O'Sullivan, C.; Ade, P.; Amico, G.; Auguste, D.; Aumont, J.; Banfi, S.; Barbarán, G.; Battaglia, P.; Battistelli, E.; Baù, A.; Bélier, B.; Bennett, D.; Bergé, L.; Bernard, J. -Ph.; Bersanelli, M.; Bigot-Sazy, M. -A.; Bleurvacq, N.; Bonaparte, J.; Bonis, J.; Bordier, G.; Bréelle, E.; Bunn, E.; Burke, D.; Buzi, D.; Buzzelli, A.; Cavaliere, F.; Chanial, P.; Chapron, C.; Charlassier, R.; Columbro, F.; Coppi, G.; Coppolecchia, A.; Couchot, F.; D'Agostino, R.; D'Alessandro, G.; De Bernardis, P.; De Gasperis, G.; De Leo, M.; De Petris, M.; Di Donato, A.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Franceschet, C.; Gamboa Lerena, M. M.; García, B.; Garrido, X.; Gaspard, M.; Gault, A.; Gayer, D.; Gervasi, M.; Giard, M.; Giraud-Héraud, Y.; Gómez Berisso, M.; González, M.; Gradziel, M.; Grandsire, L.; Guerrard, E.; Hamilton, J. -Ch.; Harari, D.; Haynes, V.; Henrot-Versillé, S.; Hoang, D. T.; Incardona, F.; Jules, E.; Kaplan, J.; Korotkov, A.; Kristukat, C.; Lamagna, L.; Loucatos, S.; Louis, T.; Lowitz, A.; Lukovic, V.; Luterstein, R.; Maffei, B.; Marnieros, S.; Masi, S.; Mattei, A.; May, A.; Mcculloch, M.; Medina, M. C.; Mele, L.; Melhuish, S.; Mennella, A.; Montier, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Olivieri, E.; Paiella, A.; Pajot, F.; Passerini, A.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perdereau, O.; Pezzotta, F.; Piacentini, F.; Piat, M.; Piccirillo, L.; Pisano, G.; Polenta, G.; Prêle, D.; Puddu, R.; Rambaud, D.; Ringegni, P.; Romero, G. E.; Salatino, M.; Schillaci, A.; Scóccola, C. G.; Scully, S.; Spinelli, S.; Stolpovskiy, M.; Suarez, F.; Tartari, A.; Thermeau, J. -P.; Timbie, P.; Torchinsky, S. A.; Tristram, M.; Truongcanh, V.; Tucker, C.; Tucker, G.; Vanneste, S.; Viganò, D.; Vittorio, N.; Voisin, F.; Watson, B.; Wicek, F.; Zannoni, M.; Zullo, A.. - STAMPA. - 10708:(2018), p. 81. (Intervento presentato al convegno Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018 tenutosi a usa) [10.1117/12.2313332].
File allegati a questo prodotto
File Dimensione Formato  
O'Sullivan_QUBIC_2018.pdf

solo gestori archivio

Note: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10708/2313332/QUBIC-the-Q-and-U-bolometric-interferometer-for-cosmology/10.1117/12.2313332.short
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1153417
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 2
social impact