Optimization of the hysteretic damping capacity of carbon nanotube (CNT) nanocomposites is carried out via a differential evolution algorithm coupled with an ad hoc finite element implementation of a nonlinear 3D mesoscale theory. Such theory describes the hysteresis due to the shear stick-slip between the nanotubes and the polymer chains of the hosting matrix. The amount of energy dissipated through the CNT-matrix stick-slip depends on the nanocomposite constitutive parameters such as the elastic mismatch, the nanofiller content/distribution, and the CNT-matrix interfacial shear strength. The optimization problem seeks to determine the set of material parameters that can give rise to the best damping capacity of the nanocomposite. The objective function is defined as the area below the damping ratio curve versus the strain amplitude over the range of strains of interest. The results confirm that the genetic-type nanocomposite damping optimization making use of a sound mechanical model of the material response can be an effective design method providing the right mix of phases overcoming a costly error-and-trial approach to manufacturing and testing.

Hysteretic damping optimization in carbon nanotube nanocomposites / Formica, Giovanni; Milicchio, Franco; Lacarbonara, Walter. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. - STAMPA. - 194:(2018), pp. 633-642. [10.1016/j.compstruct.2018.04.027]

Hysteretic damping optimization in carbon nanotube nanocomposites

Lacarbonara, Walter
Ultimo
Writing – Original Draft Preparation
2018

Abstract

Optimization of the hysteretic damping capacity of carbon nanotube (CNT) nanocomposites is carried out via a differential evolution algorithm coupled with an ad hoc finite element implementation of a nonlinear 3D mesoscale theory. Such theory describes the hysteresis due to the shear stick-slip between the nanotubes and the polymer chains of the hosting matrix. The amount of energy dissipated through the CNT-matrix stick-slip depends on the nanocomposite constitutive parameters such as the elastic mismatch, the nanofiller content/distribution, and the CNT-matrix interfacial shear strength. The optimization problem seeks to determine the set of material parameters that can give rise to the best damping capacity of the nanocomposite. The objective function is defined as the area below the damping ratio curve versus the strain amplitude over the range of strains of interest. The results confirm that the genetic-type nanocomposite damping optimization making use of a sound mechanical model of the material response can be an effective design method providing the right mix of phases overcoming a costly error-and-trial approach to manufacturing and testing.
2018
Carbon nanotube nanocompositeHysteretic damping optimizationInterfacial stick-slipDifferential evolution optimizationThree-dimensional model of hysteresis
01 Pubblicazione su rivista::01a Articolo in rivista
Hysteretic damping optimization in carbon nanotube nanocomposites / Formica, Giovanni; Milicchio, Franco; Lacarbonara, Walter. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. - STAMPA. - 194:(2018), pp. 633-642. [10.1016/j.compstruct.2018.04.027]
File allegati a questo prodotto
File Dimensione Formato  
Hysteretic_Formica_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1151984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact