We propose link-based techniques for automatic detection of Web spam, a term referring to pages which use deceptive techniques to obtain undeservedly high scores in search engines. The use of Web spam is widespread and difficult to solve, mostly due to the large size of the Web which means that, in practice, many algorithms are infeasible. We perform a statistical analysis of a large collection of Web pages. In particular, we compute statistics of the links in the vicinity of every Web page applying rank propagation and probabilistic counting over the entire Web graph in a scalable way. These statistical features are used to build Web spam classifiers which only consider the link structure of the Web, regardless of page contents. We then present a study of the performance of each of the classifiers alone, as well as their combined performance, by testing them over a large collection of Web link spam. After tenfold cross-validation, our best classifiers have a performance comparable to that of state-of-the-art spam classifiers that use content attributes, but are orthogonal to content-based methods.

Link analysis for Web spam detection / Becchetti, Luca; Carlos, Castillo; Debora, Donato; Ricardo Baeza, Yates; Leonardi, Stefano. - In: ACM TRANSACTIONS ON THE WEB. - ISSN 1559-1131. - 2:1(2008), pp. 1-42. [10.1145/1326561.1326563]

Link analysis for Web spam detection

BECCHETTI, Luca;LEONARDI, Stefano
2008

Abstract

We propose link-based techniques for automatic detection of Web spam, a term referring to pages which use deceptive techniques to obtain undeservedly high scores in search engines. The use of Web spam is widespread and difficult to solve, mostly due to the large size of the Web which means that, in practice, many algorithms are infeasible. We perform a statistical analysis of a large collection of Web pages. In particular, we compute statistics of the links in the vicinity of every Web page applying rank propagation and probabilistic counting over the entire Web graph in a scalable way. These statistical features are used to build Web spam classifiers which only consider the link structure of the Web, regardless of page contents. We then present a study of the performance of each of the classifiers alone, as well as their combined performance, by testing them over a large collection of Web link spam. After tenfold cross-validation, our best classifiers have a performance comparable to that of state-of-the-art spam classifiers that use content attributes, but are orthogonal to content-based methods.
2008
adversarial information retrieval; link analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Link analysis for Web spam detection / Becchetti, Luca; Carlos, Castillo; Debora, Donato; Ricardo Baeza, Yates; Leonardi, Stefano. - In: ACM TRANSACTIONS ON THE WEB. - ISSN 1559-1131. - 2:1(2008), pp. 1-42. [10.1145/1326561.1326563]
File allegati a questo prodotto
File Dimensione Formato  
VE_2008_11573-115157.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/115157
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 65
social impact