Cosserat continua demonstrated to have peculiar mechanical properties, with respect to classic Cauchy continua, because they are able to more accurately describe heterogeneous materials, as particle composites and masonry-like material, taking into account size effects. Many studies have been devoted to their numerical implementation. In this paper, some reference benchmarks, referred to an isotropic heterogeneous sample, are shown by comparing the solutions provided by strong and weak formulations. The strong formulation finite element method (SFEM), implemented in MATLAB®, is compared to the finite element method (FEM), given by COMSOL® Multiphysics, and the advantages of the two approaches are highlighted and discussed.
Some novel numerical applications of Cosserat continua / Fantuzzi, Nicholas; Leonetti, Lorenzo; Trovalusci, Patrizia; Tornabene, Francesco. - In: INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS. - ISSN 0219-8762. - STAMPA. - 15:6(2018), p. 1850054. [10.1142/S0219876218500548]
Some novel numerical applications of Cosserat continua
Trovalusci, Patrizia
;
2018
Abstract
Cosserat continua demonstrated to have peculiar mechanical properties, with respect to classic Cauchy continua, because they are able to more accurately describe heterogeneous materials, as particle composites and masonry-like material, taking into account size effects. Many studies have been devoted to their numerical implementation. In this paper, some reference benchmarks, referred to an isotropic heterogeneous sample, are shown by comparing the solutions provided by strong and weak formulations. The strong formulation finite element method (SFEM), implemented in MATLAB®, is compared to the finite element method (FEM), given by COMSOL® Multiphysics, and the advantages of the two approaches are highlighted and discussed.File | Dimensione | Formato | |
---|---|---|---|
Fantuzzi-SomeNovel_2018.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.49 MB
Formato
Adobe PDF
|
3.49 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.