This paper is concerned with the Dirichlet problem for an equation involving the $1$--Laplacian operator $Delta_1 u:=Divleft(rac{Du}{|Du|} ight)$ and having a singular term of the type $rac{f(x)}{u^gamma}$. Here $fin L^N(Omega)$ is nonnegative, $00$ a.e., the solution satisfies those features that might be expected as well as a uniqueness result. We also give explicit 1--dimensional examples that show that, in general, uniqueness does not hold. We remark that the Anzellotti theory of $L^infty$--divergence--measure vector fields must be extended to deal with this equation.

Elliptic problems involving the 1-Laplacian and a singular lower order term / De Cicco, V.; Giachetti, D.; Segura de Leon, S.. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - STAMPA. - (2019). [10.1112/jlms.12172]

Elliptic problems involving the 1-Laplacian and a singular lower order term

De Cicco V.;Giachetti D.;
2019

Abstract

This paper is concerned with the Dirichlet problem for an equation involving the $1$--Laplacian operator $Delta_1 u:=Divleft(rac{Du}{|Du|} ight)$ and having a singular term of the type $rac{f(x)}{u^gamma}$. Here $fin L^N(Omega)$ is nonnegative, $00$ a.e., the solution satisfies those features that might be expected as well as a uniqueness result. We also give explicit 1--dimensional examples that show that, in general, uniqueness does not hold. We remark that the Anzellotti theory of $L^infty$--divergence--measure vector fields must be extended to deal with this equation.
2019
1-Laplacian; singular lower order terms; elliptic problems
01 Pubblicazione su rivista::01a Articolo in rivista
Elliptic problems involving the 1-Laplacian and a singular lower order term / De Cicco, V.; Giachetti, D.; Segura de Leon, S.. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - STAMPA. - (2019). [10.1112/jlms.12172]
File allegati a questo prodotto
File Dimensione Formato  
DeCicco_Elliptic_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 312.83 kB
Formato Adobe PDF
312.83 kB Adobe PDF   Contatta l'autore
DeCicco_Elliptic_2018.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 421.32 kB
Formato Adobe PDF
421.32 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1148191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact