This paper is concerned with the Dirichlet problem for an equation involving the $1$--Laplacian operator $Delta_1 u:=Divleft(rac{Du}{|Du|} ight)$ and having a singular term of the type $rac{f(x)}{u^gamma}$. Here $fin L^N(Omega)$ is nonnegative, $00$ a.e., the solution satisfies those features that might be expected as well as a uniqueness result. We also give explicit 1--dimensional examples that show that, in general, uniqueness does not hold. We remark that the Anzellotti theory of $L^infty$--divergence--measure vector fields must be extended to deal with this equation.
Elliptic problems involving the 1-Laplacian and a singular lower order term / De Cicco, V.; Giachetti, D.; Segura de Leon, S.. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - STAMPA. - (2019). [10.1112/jlms.12172]
Elliptic problems involving the 1-Laplacian and a singular lower order term
De Cicco V.;Giachetti D.;
2019
Abstract
This paper is concerned with the Dirichlet problem for an equation involving the $1$--Laplacian operator $Delta_1 u:=Divleft(rac{Du}{|Du|} ight)$ and having a singular term of the type $rac{f(x)}{u^gamma}$. Here $fin L^N(Omega)$ is nonnegative, $00$ a.e., the solution satisfies those features that might be expected as well as a uniqueness result. We also give explicit 1--dimensional examples that show that, in general, uniqueness does not hold. We remark that the Anzellotti theory of $L^infty$--divergence--measure vector fields must be extended to deal with this equation.File | Dimensione | Formato | |
---|---|---|---|
DeCicco_Elliptic_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
312.83 kB
Formato
Adobe PDF
|
312.83 kB | Adobe PDF | Contatta l'autore |
DeCicco_Elliptic_2018.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
421.32 kB
Formato
Adobe PDF
|
421.32 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.