Introduction The aim of this study was to evaluate the cyclic fatigue resistance of ProTaper Universal (PTU; Dentsply Maillefer, Baillagues, Switzerland) and ProTaper Gold (PTG, Dentsply Maillefer) nickel-titanium rotary files at room and intracanal temperatures. Methods A total of 120 files were used to test the cyclic fatigue resistance of PTU (S1 and F2) and PTG (S1 and F2) in an artificial canal at room temperature (20°C) and at intracanal temperature (35°C). The number of cycles to failure and the fracture length of the fragment were recorded, and data were subjected to statistical analysis. Results PTG registered no differences in fatigue life between the 2 temperatures tested (P > .05), whereas PTU showed a statistically significant reduction in fatigue life at intracanal temperature compared with room temperature (P < .05). PTG instruments exhibited a statistically higher resistance to cyclic fatigue than PTU instruments both at room and intracanal temperatures (P < .05). There were no statistically significant differences among the fracture length of separated instruments (P > .05). Conclusions Intracanal temperature influenced the cyclic fatigue resistance of instruments produced with traditional nickel-titanium, whereas it did not influence the fatigue life of instruments produced with gold heat treatment. Gold heating treatment enhances the resistance to cyclic fatigue of ProTaper instruments.
Influence of temperature on cyclic fatigue resistance of ProTaper Gold and ProTaper Universal rotary files / Plotino, Gianluca; Grande, Nicola M.; Mercadé Bellido, Montse; Testarelli, Luca; Gambarini, Gianluca. - In: JOURNAL OF ENDODONTICS. - ISSN 0099-2399. - STAMPA. - 43:2(2017), pp. 200-202. [10.1016/j.joen.2016.10.014]
Influence of temperature on cyclic fatigue resistance of ProTaper Gold and ProTaper Universal rotary files
Plotino, GianlucaPrimo
;Grande, Nicola M.Secondo
;Testarelli, LucaPenultimo
Conceptualization
;Gambarini, GianlucaUltimo
2017
Abstract
Introduction The aim of this study was to evaluate the cyclic fatigue resistance of ProTaper Universal (PTU; Dentsply Maillefer, Baillagues, Switzerland) and ProTaper Gold (PTG, Dentsply Maillefer) nickel-titanium rotary files at room and intracanal temperatures. Methods A total of 120 files were used to test the cyclic fatigue resistance of PTU (S1 and F2) and PTG (S1 and F2) in an artificial canal at room temperature (20°C) and at intracanal temperature (35°C). The number of cycles to failure and the fracture length of the fragment were recorded, and data were subjected to statistical analysis. Results PTG registered no differences in fatigue life between the 2 temperatures tested (P > .05), whereas PTU showed a statistically significant reduction in fatigue life at intracanal temperature compared with room temperature (P < .05). PTG instruments exhibited a statistically higher resistance to cyclic fatigue than PTU instruments both at room and intracanal temperatures (P < .05). There were no statistically significant differences among the fracture length of separated instruments (P > .05). Conclusions Intracanal temperature influenced the cyclic fatigue resistance of instruments produced with traditional nickel-titanium, whereas it did not influence the fatigue life of instruments produced with gold heat treatment. Gold heating treatment enhances the resistance to cyclic fatigue of ProTaper instruments.File | Dimensione | Formato | |
---|---|---|---|
Plotino_Influence_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
90.81 kB
Formato
Adobe PDF
|
90.81 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.