We study nonnegative solutions of the Cauchy problem ∂ t u + ∂ x [ φ (u) ] = 0 in × (0, T), u = u 0 ≥ 0 in × 0 , \left\\beginaligned &\displaystyle\partial-tu+\partial-x[\varphi(u)]=0&% &\displaystyle\phantom\textin \mathbbR\times(0,T),\\ &\displaystyle u=u-0\geq 0&&\displaystyle\phantom\textin \mathbbR% \times\0\,\endaligned\right. where u 0 u-0 is a Radon measure and φ: [ 0, ∞) → \varphi\colon[0,\infty)\mapsto\mathbbR is a globally Lipschitz continuous function. We construct suitably defined entropy solutions in the space of Radon measures. Under some additional conditions on φ, we prove their uniqueness if the singular part of u 0 u-0 is a finite superposition of Dirac masses. Regarding the behavior of φ at infinity, we give criteria to distinguish two cases: either all solutions are function-valued for positive times (an instantaneous regularizing effect), or the singular parts of certain solutions persist until some positive waiting time (in the linear case φ (u) = u \varphi(u)=u this happens for all times). In the latter case, we describe the evolution of the singular parts.

Radon measure-valued solutions of first order scalar conservation laws / Bertsch, Michiel; Smarrazzo, Flavia; Terracina, Andrea; Tesei, Alberto. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - STAMPA. - 0:0(2020). [10.1515/anona-2018-0056]

Radon measure-valued solutions of first order scalar conservation laws

Terracina, Andrea;
2020

Abstract

We study nonnegative solutions of the Cauchy problem ∂ t u + ∂ x [ φ (u) ] = 0 in × (0, T), u = u 0 ≥ 0 in × 0 , \left\\beginaligned &\displaystyle\partial-tu+\partial-x[\varphi(u)]=0&% &\displaystyle\phantom\textin \mathbbR\times(0,T),\\ &\displaystyle u=u-0\geq 0&&\displaystyle\phantom\textin \mathbbR% \times\0\,\endaligned\right. where u 0 u-0 is a Radon measure and φ: [ 0, ∞) → \varphi\colon[0,\infty)\mapsto\mathbbR is a globally Lipschitz continuous function. We construct suitably defined entropy solutions in the space of Radon measures. Under some additional conditions on φ, we prove their uniqueness if the singular part of u 0 u-0 is a finite superposition of Dirac masses. Regarding the behavior of φ at infinity, we give criteria to distinguish two cases: either all solutions are function-valued for positive times (an instantaneous regularizing effect), or the singular parts of certain solutions persist until some positive waiting time (in the linear case φ (u) = u \varphi(u)=u this happens for all times). In the latter case, we describe the evolution of the singular parts.
2020
entropy inequalities; first order hyperbolic conservation laws; radon measure-valued solutions; uniqueness; analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Radon measure-valued solutions of first order scalar conservation laws / Bertsch, Michiel; Smarrazzo, Flavia; Terracina, Andrea; Tesei, Alberto. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - STAMPA. - 0:0(2020). [10.1515/anona-2018-0056]
File allegati a questo prodotto
File Dimensione Formato  
Bertsch_Radon-measure_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1145823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact