A multi-objective deterministic hybrid algorithm (MODHA) is introduced for efficient simulation-based design optimization. The global exploration capability of multi-objective deterministic particle swarm optimization (MODPSO) is combined with the local search accuracy of a derivative-free multi-objective (DFMO) linesearch method. Six MODHA formulations are discussed, based on two MODPSO formulations and three DFMO activation criteria. Forty five analytical test problems are solved, with two/three objectives and one to twelve variables. The performance is evaluated by two multi-objective metrics. The most promising formulations are finally applied to the hull-form optimization of a high-speed catamaran in realistic ocean conditions and compared to MODPSO and DFMO, showing promising results.

Hybrid global/local derivative-free multi-objective optimization via deterministic particle swarm with local linesearch / Pellegrini, Riccardo; Serani, Andrea; Liuzzi, Giampaolo; Rinaldi, Francesco; Lucidi, Stefano; Campana, Emilio F.; Iemma, Umberto; Diez, Matteo. - STAMPA. - 10710:(2018), pp. 198-209. (Intervento presentato al convegno 3rd International Conference on Machine Learning, Optimization, and Big Data, MOD 2017 tenutosi a Volterra, Italy) [10.1007/978-3-319-72926-8_17].

Hybrid global/local derivative-free multi-objective optimization via deterministic particle swarm with local linesearch

Liuzzi, Giampaolo;Lucidi, Stefano;
2018

Abstract

A multi-objective deterministic hybrid algorithm (MODHA) is introduced for efficient simulation-based design optimization. The global exploration capability of multi-objective deterministic particle swarm optimization (MODPSO) is combined with the local search accuracy of a derivative-free multi-objective (DFMO) linesearch method. Six MODHA formulations are discussed, based on two MODPSO formulations and three DFMO activation criteria. Forty five analytical test problems are solved, with two/three objectives and one to twelve variables. The performance is evaluated by two multi-objective metrics. The most promising formulations are finally applied to the hull-form optimization of a high-speed catamaran in realistic ocean conditions and compared to MODPSO and DFMO, showing promising results.
2018
3rd International Conference on Machine Learning, Optimization, and Big Data, MOD 2017
Derivative-free optimization; Deterministic optimization; Hybrid global/local optimization; Linesearch method; Multi-objective optimization; Particle swarm optimization; Theoretical Computer Science; Computer Science (all)
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Hybrid global/local derivative-free multi-objective optimization via deterministic particle swarm with local linesearch / Pellegrini, Riccardo; Serani, Andrea; Liuzzi, Giampaolo; Rinaldi, Francesco; Lucidi, Stefano; Campana, Emilio F.; Iemma, Umberto; Diez, Matteo. - STAMPA. - 10710:(2018), pp. 198-209. (Intervento presentato al convegno 3rd International Conference on Machine Learning, Optimization, and Big Data, MOD 2017 tenutosi a Volterra, Italy) [10.1007/978-3-319-72926-8_17].
File allegati a questo prodotto
File Dimensione Formato  
Pellegrini_Preprint-Hybrid-Global-Local_2018.pdf

Open Access dal 01/09/2019

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF
Pellegrini_Hybrid-Global-Local_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Contatta l'autore
Pellegrini_Frontespizio-indice_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 177.58 kB
Formato Adobe PDF
177.58 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1138983
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact