A multi-objective deterministic hybrid algorithm (MODHA) is introduced for efficient simulation-based design optimization. The global exploration capability of multi-objective deterministic particle swarm optimization (MODPSO) is combined with the local search accuracy of a derivative-free multi-objective (DFMO) linesearch method. Six MODHA formulations are discussed, based on two MODPSO formulations and three DFMO activation criteria. Forty five analytical test problems are solved, with two/three objectives and one to twelve variables. The performance is evaluated by two multi-objective metrics. The most promising formulations are finally applied to the hull-form optimization of a high-speed catamaran in realistic ocean conditions and compared to MODPSO and DFMO, showing promising results.
Hybrid global/local derivative-free multi-objective optimization via deterministic particle swarm with local linesearch / Pellegrini, Riccardo; Serani, Andrea; Liuzzi, Giampaolo; Rinaldi, Francesco; Lucidi, Stefano; Campana, Emilio F.; Iemma, Umberto; Diez, Matteo. - STAMPA. - 10710:(2018), pp. 198-209. (Intervento presentato al convegno 3rd International Conference on Machine Learning, Optimization, and Big Data, MOD 2017 tenutosi a Volterra, Italy) [10.1007/978-3-319-72926-8_17].
Hybrid global/local derivative-free multi-objective optimization via deterministic particle swarm with local linesearch
Liuzzi, Giampaolo;Lucidi, Stefano;
2018
Abstract
A multi-objective deterministic hybrid algorithm (MODHA) is introduced for efficient simulation-based design optimization. The global exploration capability of multi-objective deterministic particle swarm optimization (MODPSO) is combined with the local search accuracy of a derivative-free multi-objective (DFMO) linesearch method. Six MODHA formulations are discussed, based on two MODPSO formulations and three DFMO activation criteria. Forty five analytical test problems are solved, with two/three objectives and one to twelve variables. The performance is evaluated by two multi-objective metrics. The most promising formulations are finally applied to the hull-form optimization of a high-speed catamaran in realistic ocean conditions and compared to MODPSO and DFMO, showing promising results.File | Dimensione | Formato | |
---|---|---|---|
Pellegrini_Preprint-Hybrid-Global-Local_2018.pdf
Open Access dal 01/09/2019
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.4 MB
Formato
Adobe PDF
|
2.4 MB | Adobe PDF | |
Pellegrini_Hybrid-Global-Local_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Contatta l'autore |
Pellegrini_Frontespizio-indice_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
177.58 kB
Formato
Adobe PDF
|
177.58 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.