Topological Data Analysis (\texttt{TDA}) is a recent and growing branch of statistics devoted to the study of the shape of the data. Motivated by the complexity of the object summarizing the topology of data, we introduce a new topological kernel that allows to extend the \texttt{TDA} toolbox to supervised learning. Exploiting the geodesic structure of the space of Persistence Diagrams, we define a geodesic kernel for Persistence Diagrams, we characterize it, and we show with an application that, despite not being positive semi--definite, it can be successfully used in regression tasks.
Indefinite Topological Kernels / Padellini, Tullia; Brutti, Pierpaolo. - (2018), pp. 1-16. (Intervento presentato al convegno 49th Scientific Meeting of the Italian Statistical Society tenutosi a Palermo; Italy).
Indefinite Topological Kernels
Tullia Padellini;Pierpaolo Brutti
2018
Abstract
Topological Data Analysis (\texttt{TDA}) is a recent and growing branch of statistics devoted to the study of the shape of the data. Motivated by the complexity of the object summarizing the topology of data, we introduce a new topological kernel that allows to extend the \texttt{TDA} toolbox to supervised learning. Exploiting the geodesic structure of the space of Persistence Diagrams, we define a geodesic kernel for Persistence Diagrams, we characterize it, and we show with an application that, despite not being positive semi--definite, it can be successfully used in regression tasks.File | Dimensione | Formato | |
---|---|---|---|
Padellini_Supervise-learning_2017.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.88 MB
Formato
Adobe PDF
|
2.88 MB | Adobe PDF | Contatta l'autore |
Padellini_Supervise-learning_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
91.84 MB
Formato
Adobe PDF
|
91.84 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.