The OASIS (Off-Axis Seamount Investigations at Siqueiros) expedition is a multidisciplinary effort to systematically investigate the 8˚20’N Seamount Chain to better understand the melting processes in the southern portion of the 9-10˚N segment of the East Pacific Rise (EPR). The 8˚20’N Seamount Chain extends ~160 km west from its initiation, ~15km northwest of the EPR-Siqueiros ridge transform intersection (RTI). To investigate the emplacement of the 8˚20’N Seamounts, shipboard EM-122 multibeam, BGM-3 gravity, and towed magnetometer data were collected using the R/V Atlantis in November 2016. Multibeam data show that the seamount chain is characterized by discrete seamounts in the distal portion of the chain, while east of 105˚20’ W, the chain is a nearly-continuous volcanic ridge comprised of small cones and coalesced edifices. Free Air Anomalies are used to calculate isostatic anomalies along several profiles crossing the main edifices of the seamount chain, and indicate that the seamounts formed within 100 km of the EPR ridge axis. Excess crustal thickness variations of 0.5 to 1 km, derived from the Residual Mantle Bouguer Anomaly, suggest an increase in melt flux eastward along the chain. Consistently high emplacement volumes are observed east of -105 ˚20’ W, ~130 km from the ridge axis corresponding with lithosphere younger than 2 Myr. Inverted three-dimensional magnetization data indicate that the seamounts have recorded a series of magnetic reversals along the chain, which correlate to reversals recorded in the surrounding seafloor upon which the seamounts were built. However, reversals along the eastern portion of the chain appear skewed to the west indicating that seamount formation is likely long-lived. While the geophysical observations indicate that the overall seamount chain is age progressive, they suggest coeval volcanism in a region 15-100km from the EPR. The seamounts do not follow absolute plate motions, but are located consistently 15-20 km north of the Siqueiros fracture zone, which further suggests that their formation is linked to the location and tectonic evolution of the Siqueiros-EPR-RTI. These findings have implications for the melt region sourcing the EPR as well as how melt is transported in the vicinity of a fracture zone.

V51D-0391: Formation and evolution of the near axis 8˚20’N seamount chain: Evidences from the geophysical data analysis / Romano, Valentina; M Gregg, Patricia; Zhan, Yan; Fornari, Daniel J.; R Perfit, Michael; Battaglia, Maurizio. - ELETTRONICO. - (2017). (Intervento presentato al convegno American Geophysical Union, Fall Meeting 2017 tenutosi a New Orleans).

V51D-0391: Formation and evolution of the near axis 8˚20’N seamount chain: Evidences from the geophysical data analysis

Valentina Romano
Primo
Investigation
;
Maurizio Battaglia
Ultimo
Supervision
2017

Abstract

The OASIS (Off-Axis Seamount Investigations at Siqueiros) expedition is a multidisciplinary effort to systematically investigate the 8˚20’N Seamount Chain to better understand the melting processes in the southern portion of the 9-10˚N segment of the East Pacific Rise (EPR). The 8˚20’N Seamount Chain extends ~160 km west from its initiation, ~15km northwest of the EPR-Siqueiros ridge transform intersection (RTI). To investigate the emplacement of the 8˚20’N Seamounts, shipboard EM-122 multibeam, BGM-3 gravity, and towed magnetometer data were collected using the R/V Atlantis in November 2016. Multibeam data show that the seamount chain is characterized by discrete seamounts in the distal portion of the chain, while east of 105˚20’ W, the chain is a nearly-continuous volcanic ridge comprised of small cones and coalesced edifices. Free Air Anomalies are used to calculate isostatic anomalies along several profiles crossing the main edifices of the seamount chain, and indicate that the seamounts formed within 100 km of the EPR ridge axis. Excess crustal thickness variations of 0.5 to 1 km, derived from the Residual Mantle Bouguer Anomaly, suggest an increase in melt flux eastward along the chain. Consistently high emplacement volumes are observed east of -105 ˚20’ W, ~130 km from the ridge axis corresponding with lithosphere younger than 2 Myr. Inverted three-dimensional magnetization data indicate that the seamounts have recorded a series of magnetic reversals along the chain, which correlate to reversals recorded in the surrounding seafloor upon which the seamounts were built. However, reversals along the eastern portion of the chain appear skewed to the west indicating that seamount formation is likely long-lived. While the geophysical observations indicate that the overall seamount chain is age progressive, they suggest coeval volcanism in a region 15-100km from the EPR. The seamounts do not follow absolute plate motions, but are located consistently 15-20 km north of the Siqueiros fracture zone, which further suggests that their formation is linked to the location and tectonic evolution of the Siqueiros-EPR-RTI. These findings have implications for the melt region sourcing the EPR as well as how melt is transported in the vicinity of a fracture zone.
2017
American Geophysical Union, Fall Meeting 2017
04 Pubblicazione in atti di convegno::04d Abstract in atti di convegno
V51D-0391: Formation and evolution of the near axis 8˚20’N seamount chain: Evidences from the geophysical data analysis / Romano, Valentina; M Gregg, Patricia; Zhan, Yan; Fornari, Daniel J.; R Perfit, Michael; Battaglia, Maurizio. - ELETTRONICO. - (2017). (Intervento presentato al convegno American Geophysical Union, Fall Meeting 2017 tenutosi a New Orleans).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1132254
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact