We consider a system of differential equations of Monge–Kantorovich type which describes the equilibrium configurations of granular material poured by a constant source on a network. Relying on the definition of viscosity solution for Hamilton–Jacobi equations on networks introduced in [P.-L. Lions and P. E. Souganidis, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 (2016), pp. 535–545], we prove existence and uniqueness of the solution of the system and we discuss its numerical approximation. Some numerical experiments are carried out.
A differential model for growing sandpiles on networks / Cacace, Simone; Camilli, Fabio; Corrias, Lucilla. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 50:3(2018), pp. 2509-2535. [10.1137/17M113143X]
A differential model for growing sandpiles on networks
Cacace, Simone;Camilli, Fabio
;
2018
Abstract
We consider a system of differential equations of Monge–Kantorovich type which describes the equilibrium configurations of granular material poured by a constant source on a network. Relying on the definition of viscosity solution for Hamilton–Jacobi equations on networks introduced in [P.-L. Lions and P. E. Souganidis, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 (2016), pp. 535–545], we prove existence and uniqueness of the solution of the system and we discuss its numerical approximation. Some numerical experiments are carried out.File | Dimensione | Formato | |
---|---|---|---|
SIMA2.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
801.07 kB
Formato
Adobe PDF
|
801.07 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.