We consider a system of differential equations of Monge–Kantorovich type which describes the equilibrium configurations of granular material poured by a constant source on a network. Relying on the definition of viscosity solution for Hamilton–Jacobi equations on networks introduced in [P.-L. Lions and P. E. Souganidis, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 (2016), pp. 535–545], we prove existence and uniqueness of the solution of the system and we discuss its numerical approximation. Some numerical experiments are carried out.

A differential model for growing sandpiles on networks / Cacace, Simone; Camilli, Fabio; Corrias, Lucilla. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 50:3(2018), pp. 2509-2535. [10.1137/17M113143X]

A differential model for growing sandpiles on networks

Cacace, Simone;Camilli, Fabio
;
2018

Abstract

We consider a system of differential equations of Monge–Kantorovich type which describes the equilibrium configurations of granular material poured by a constant source on a network. Relying on the definition of viscosity solution for Hamilton–Jacobi equations on networks introduced in [P.-L. Lions and P. E. Souganidis, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 (2016), pp. 535–545], we prove existence and uniqueness of the solution of the system and we discuss its numerical approximation. Some numerical experiments are carried out.
2018
Granular matter; Monge–Kantorovich system; Networks; Viscosity solutions; Analysis; Computational Mathematics; Applied Mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
A differential model for growing sandpiles on networks / Cacace, Simone; Camilli, Fabio; Corrias, Lucilla. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 50:3(2018), pp. 2509-2535. [10.1137/17M113143X]
File allegati a questo prodotto
File Dimensione Formato  
SIMA2.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 801.07 kB
Formato Adobe PDF
801.07 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1131846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact