We consider stochastic processes, S-t = (S-x(t): x is an element of Z(d)) is an element of L-0(Zd) with L-0 finite, in which spin flips (i.e., changes of S-x(t)) do not raise the energy. We extend earlier results of Nanda- Newman- Stein that each site x has almost surely only finitely many flips that strictly lower the energy and thus that in models without zero-energy flips there is convergence to an absorbing state. In particular, the assumption of finite mean energy density can be eliminated by constructing a percolation-theoretic Lyapunov function density as a substitute for the mean energy density. Our results apply to random energy functions with a translation-invariant distribution and to quite general (not necessarily Markovian) dynamics.

Convergence in energy-lowering (disordered) stochastic spin systems / DE SANTIS, Emilio; C. M., Newman. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 110:1-2(2003), pp. 431-442. [10.1023/a:1021039200087]

Convergence in energy-lowering (disordered) stochastic spin systems

DE SANTIS, Emilio;
2003

Abstract

We consider stochastic processes, S-t = (S-x(t): x is an element of Z(d)) is an element of L-0(Zd) with L-0 finite, in which spin flips (i.e., changes of S-x(t)) do not raise the energy. We extend earlier results of Nanda- Newman- Stein that each site x has almost surely only finitely many flips that strictly lower the energy and thus that in models without zero-energy flips there is convergence to an absorbing state. In particular, the assumption of finite mean energy density can be eliminated by constructing a percolation-theoretic Lyapunov function density as a substitute for the mean energy density. Our results apply to random energy functions with a translation-invariant distribution and to quite general (not necessarily Markovian) dynamics.
2003
absorbing state; disordered system; energy lowering; lyapunov function; percolation; stochastic ising model; stochastic spin system
01 Pubblicazione su rivista::01a Articolo in rivista
Convergence in energy-lowering (disordered) stochastic spin systems / DE SANTIS, Emilio; C. M., Newman. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 110:1-2(2003), pp. 431-442. [10.1023/a:1021039200087]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/113072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact