The crater terrace of Stromboli Volcano (Italy) hosts several active vents which have evolved and migrated through time within three main vent areas: south-west (SW), central (C), and north-east (NE). Frequent, jet-like explosions typically take place, episodically interrupted by larger-scale paroxysms, which can substantially modify the morphology of the crater terrace and vent geometries. However, the link between the time-space evolution of vent activity and the shallow conduit system are still a matter of debate. In this work, we analyze the vent position and explosion parameters (jet duration and geometry) of 4296 events at Stromboli in five 72-h-long time-windows between 2005 and 2009, as recorded by an infrared surveillance camera. Vent locations illustrate the resilience of the shallow conduit system, which controls explosive activity at different time scales and depths. At the shallowest depth, where slugs burst, conduit branching and merging determines the evolution of simultaneous or alternating twin vents, while vent shape and slug size control local explosion parameters. These processes show variability on an hourly to daily time scale. Below the depth of the slug burst, the conduit system feeding each vent area controls which specific vent will host the explosions and also, possibly, the size of the slugs. Several observations suggest that the C and SW vent areas may be connected at this depth. The deeper conduit system, common to all vent areas, sets the overall explosion rate of the volcano and maintains a balance of this rate between the NE and the combined SWand C vent areas.
Parameterizing multi-vent activity at Stromboli Volcano (Aeolian Islands, Italy) / Salvatore, Valentino; Silleni, Aurora; Corneli, Davide; Taddeucci, Jacopo; Palladino, Danilo M.; Sottili, Gianluca; Bernini, Danilo; Andronico, Daniele; Cristaldi, Antonio. - In: BULLETIN OF VOLCANOLOGY. - ISSN 0258-8900. - STAMPA. - 80:7(2018). [10.1007/s00445-018-1239-8]
Parameterizing multi-vent activity at Stromboli Volcano (Aeolian Islands, Italy)
Salvatore, Valentino
;Silleni, Aurora;Palladino, Danilo M.;Sottili, Gianluca;
2018
Abstract
The crater terrace of Stromboli Volcano (Italy) hosts several active vents which have evolved and migrated through time within three main vent areas: south-west (SW), central (C), and north-east (NE). Frequent, jet-like explosions typically take place, episodically interrupted by larger-scale paroxysms, which can substantially modify the morphology of the crater terrace and vent geometries. However, the link between the time-space evolution of vent activity and the shallow conduit system are still a matter of debate. In this work, we analyze the vent position and explosion parameters (jet duration and geometry) of 4296 events at Stromboli in five 72-h-long time-windows between 2005 and 2009, as recorded by an infrared surveillance camera. Vent locations illustrate the resilience of the shallow conduit system, which controls explosive activity at different time scales and depths. At the shallowest depth, where slugs burst, conduit branching and merging determines the evolution of simultaneous or alternating twin vents, while vent shape and slug size control local explosion parameters. These processes show variability on an hourly to daily time scale. Below the depth of the slug burst, the conduit system feeding each vent area controls which specific vent will host the explosions and also, possibly, the size of the slugs. Several observations suggest that the C and SW vent areas may be connected at this depth. The deeper conduit system, common to all vent areas, sets the overall explosion rate of the volcano and maintains a balance of this rate between the NE and the combined SWand C vent areas.File | Dimensione | Formato | |
---|---|---|---|
Salvatore_Parameterizing-2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
8.89 MB
Formato
Adobe PDF
|
8.89 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.