We obtain a probabilistic proof of the local Lipschitz continuity for the optimal stopping boundary of a class of problems with state space [0; T] Rd, d 1. To the best of our knowledge this is the only existing proof that relies exclusively upon stochastic calculus, all the other proofs making use of PDE techniques and integral equations. Thanks to our approach we obtain ourresult for a class of diusions whose associated second order dierential operator is not necessarily uniformly elliptic. The latter condition is normally assumed in the related PDE literature.

On Lipschitz continuous optimal stopping boundaries / De Angelis, Tiziano; Stabile, Gabriele. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - 57:1(2019), pp. 402-436.

On Lipschitz continuous optimal stopping boundaries

Gabriele Stabile
2019

Abstract

We obtain a probabilistic proof of the local Lipschitz continuity for the optimal stopping boundary of a class of problems with state space [0; T] Rd, d 1. To the best of our knowledge this is the only existing proof that relies exclusively upon stochastic calculus, all the other proofs making use of PDE techniques and integral equations. Thanks to our approach we obtain ourresult for a class of diusions whose associated second order dierential operator is not necessarily uniformly elliptic. The latter condition is normally assumed in the related PDE literature.
2019
optimal stopping; free boundary problems; Lipschitz free boundaries
01 Pubblicazione su rivista::01a Articolo in rivista
On Lipschitz continuous optimal stopping boundaries / De Angelis, Tiziano; Stabile, Gabriele. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - 57:1(2019), pp. 402-436.
File allegati a questo prodotto
File Dimensione Formato  
Stabile_Lipschitz-continuous_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 512.25 kB
Formato Adobe PDF
512.25 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1124838
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact