We prove a Margulis' Lemma à la Besson-Courtois-Gallot, for manifolds whose fundamental group is a nontrivial free product A ∗ B, without 2-torsion. Moreover, if A ∗ B is torsion-free we give a lower bound for the homotopy systole in terms of upper bounds on the diameter and the volume-entropy. We also provide examples and counterexamples showing the optimality of our assumption. Finally we give two applications of this result: a finiteness theorem and a volume estimate for reducible manifolds.
Margulis Lemma, entropy and free products / Cerocchi, Filippo. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 0373-0956. - STAMPA. - 64:3(2014), pp. 1011-1030. [10.5802/aif.2872]
Margulis Lemma, entropy and free products
Cerocchi, Filippo
2014
Abstract
We prove a Margulis' Lemma à la Besson-Courtois-Gallot, for manifolds whose fundamental group is a nontrivial free product A ∗ B, without 2-torsion. Moreover, if A ∗ B is torsion-free we give a lower bound for the homotopy systole in terms of upper bounds on the diameter and the volume-entropy. We also provide examples and counterexamples showing the optimality of our assumption. Finally we give two applications of this result: a finiteness theorem and a volume estimate for reducible manifolds.| File | Dimensione | Formato | |
|---|---|---|---|
|
Cerocchi_Margulis-Lemma_2014.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
613.26 kB
Formato
Adobe PDF
|
613.26 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


