Energy consumption has become a core concern in computing systems. In this context, power capping is an approach that aims at ensuring that the power consumption of a system does not overcome a predefined threshold. Although various power capping techniques exist in the literature, they do not fit well the nature of multi-threaded workloads with shared data accesses and non-minimal thread-level concurrency. For these workloads, scalability may be limited by thread contention on hardware resources and/or data, to the point that performance may even decrease while increasing the thread-level parallelism, indicating scarce ability to exploit the actual computing power available in highly parallel hardware. In this paper, we consider the problem of maximizing the performance of multi-thread applications under a power cap by dynamically tuning the thread-level parallelism and the power state of CPU-cores in combination. Based on experimental observations, we design a technique that adaptively identifies, in linear time within a bi-dimensional space, the optimal parallelism and power state setting. We evaluated the proposed technique with different benchmark applications, and using different methods for synchronizing threads when accessing shared data, and we compared it with other state-of-the-art power capping techniques.

Adaptive performance optimization under power constraint in multi-thread applications with diverse scalability / Conoci, Stefano; DI SANZO, Pierangelo; Ciciani, Bruno; Quaglia, Francesco. - STAMPA. - (2018), pp. 16-27. (Intervento presentato al convegno ICPE '18 Proceedings of the 2018 ACM/SPEC International Conference on Performance tenutosi a Berlin; Germany nel April 9-13, 2018) [10.1145/3184407.3184419].

Adaptive performance optimization under power constraint in multi-thread applications with diverse scalability

stefano conoci
;
pierangelo di sanzo
;
bruno ciciani
;
2018

Abstract

Energy consumption has become a core concern in computing systems. In this context, power capping is an approach that aims at ensuring that the power consumption of a system does not overcome a predefined threshold. Although various power capping techniques exist in the literature, they do not fit well the nature of multi-threaded workloads with shared data accesses and non-minimal thread-level concurrency. For these workloads, scalability may be limited by thread contention on hardware resources and/or data, to the point that performance may even decrease while increasing the thread-level parallelism, indicating scarce ability to exploit the actual computing power available in highly parallel hardware. In this paper, we consider the problem of maximizing the performance of multi-thread applications under a power cap by dynamically tuning the thread-level parallelism and the power state of CPU-cores in combination. Based on experimental observations, we design a technique that adaptively identifies, in linear time within a bi-dimensional space, the optimal parallelism and power state setting. We evaluated the proposed technique with different benchmark applications, and using different methods for synchronizing threads when accessing shared data, and we compared it with other state-of-the-art power capping techniques.
2018
ICPE '18 Proceedings of the 2018 ACM/SPEC International Conference on Performance
Power cap; Multi-threaded workload; Performance optimization; Power eiciency
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Adaptive performance optimization under power constraint in multi-thread applications with diverse scalability / Conoci, Stefano; DI SANZO, Pierangelo; Ciciani, Bruno; Quaglia, Francesco. - STAMPA. - (2018), pp. 16-27. (Intervento presentato al convegno ICPE '18 Proceedings of the 2018 ACM/SPEC International Conference on Performance tenutosi a Berlin; Germany nel April 9-13, 2018) [10.1145/3184407.3184419].
File allegati a questo prodotto
File Dimensione Formato  
Conoci_Adaptive-performance-optimization_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Contatta l'autore
ICPE'19_Frontespizio-indice_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.08 MB
Formato Adobe PDF
4.08 MB Adobe PDF   Contatta l'autore
Conoci_Postprint_Adaptive-performance-optimization_2018.pdf

accesso aperto

Note: https://dl.acm.org/citation.cfm?id=3184419
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 902.74 kB
Formato Adobe PDF
902.74 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1123817
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact